4.8 Article

Using NMR to Test Molecular Mobility during a Chemical Reaction

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 12, Issue 9, Pages 2370-2375

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.1c00066

Keywords

-

Funding

  1. Institute for Basic Science [IBS-R020-D1]

Ask authors/readers for more resources

This paper critically evaluates the use of NMR technology to measure molecular mobility during chemical reactions and confirms the increase in molecular mobility in different chemical reactions. The importance of avoiding convection, allowing decay and recovery of nuclear spin magnetization between pulses, and satisfying quasi-steady state during data acquisition is emphasized in ensuring experiment reliability.
We evaluate critically the use of pulsed gradient spin-echo nuclear magnetic resonance to measure molecular mobility during chemical reactions. With raw NMR spectra available in a public depository, we confirm the boosted mobility during the click chemical reaction (Wang et al. Science 2020 369, 537-541) regardless of the order of magnetic field gradient (linearly increasing, linearly decreasing, random sequence). We also confirm boosted mobility for the Diels-Alder chemical reaction. The conceptual advantage of the former chemical system is that a constant reaction rate implies a constant catalyst concentration, whereas that of the latter is the absence of a paramagnetic catalyst, precluding paramagnetism as an objection to the measurements. The data and discussion in this paper show the reliability of experiments when one avoids convection, allows decay of nuclear spin magnetization between successive pulses and recovery of its intensity between gradients, and satisfies quasi-steady state during the time window to acquire each datum. Especially important is to make comparisons on the time scale of the actual chemical reaction kinetics. We discuss possible sources of mistaken conclusions that are desirable to avoid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available