4.7 Article

Quantitative investigation on deep hydrogen trapping in tempered martensitic steel

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 854, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.157218

Keywords

Hydrogen embrittlement; Martensitic steels; Hydrogen traps; Precipitation; Transmission electron microscopy

Funding

  1. National Natural Science Foundation of China [U1706221, 51922002, 51771025]
  2. graduate school of University of Science and Technology Beijing

Ask authors/readers for more resources

This study quantitatively investigated the correlation between different microstructural components and high-density hydrogen trapping in tempered niobium carbide (NbC)-precipitated martensitic steel. It was found that martensite lath and a high density of dislocations served as reversible hydrogen trapping sites, while NbC nanoprecipitates, high-angle grain boundaries, and grain-boundary precipitates acted as irreversible hydrogen traps. These findings are significant for enhancing the hydrogen embrittlement resistance of high-strength martensitic steels.
In this work, the correlation between different microstructural components and hydrogen trapping with high density in tempered niobium carbide (NbC)-precipitated martensitic steel was quantitatively investigated using a combination of electrochemical hydrogen permeation experiments and thermal desorption spectroscopy. The martensite lath and a high density of dislocations, which constitute the reversible hydrogen trapping sites, with a density of 2.24 x 10(20) cm(-3) in Fe-0.05C-1.10Mn-4.50Ni-0.50Cr-0.50Mo-0.05Nb wt.% martensitic steel. The dislocation with high density could disperse the hydrogen distribution. Furthermore, the uniformly distributed NbC nanoprecipitates, the high-angle grain boundaries, and the grain-boundary precipitates were found to act as irreversible hydrogen traps, with a density of 1.00 x 10(20) cm(-3). These deep hydrogen trapping sites could not only trap hydrogen irreversibly, but also can inhibit the accumulation of hydrogen. The interpretation of hydrogen trapping is significant to enhance the hydrogen embrittlement resistance of high-strength martensitic steels. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Metallurgy & Metallurgical Engineering

In situ formed ultrafine metallic Ni from nickel (II) acetylacetonate precursor to realize an exceptional hydrogen storage performance of MgH2 -Ni-EG nanocomposite

Shaoyang Shen, Liuzhang Ouyang, Jiangwen Liu, Hui Wang, Xu-Sheng Yang, Min Zhu

Summary: A one-step high-energy ball milling process is used to in situ form ultrafine Ni nanoparticles and combine them with expanded graphite to synthesize a MgH2Ni-EG nanocomposite. The nanocomposite exhibits excellent hydrogen storage performance at both high and room temperatures.

JOURNAL OF MAGNESIUM AND ALLOYS (2023)

Article Materials Science, Multidisciplinary

An extraordinary-performance gradient nanostructured Hadfield manganese steel containing multi-phase nanocrystalline-amorphous core-shell surface layer by laser surface processing

Wanting Sun, Jiasi Luo, Yim Ying Chan, J. H. Luan, Xu-Sheng Yang

Summary: In this study, a laser surface remelting technique was used to fabricate a heterogeneous gradient nanostructured layer on an austenitic Hadfield manganese steel. The layer exhibited a gradient refinement process and had a core-shell structure with ultra-strong mechanical properties due to the extra work hardening ability induced by the strength-ductility synergy in the gradient nanostructure.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Hydrated Bi-Ti-Bimetal Ethylene Glycol: A New High-Capacity and Stable Anode Material for Potassium-Ion Batteries

Ziquan Li, Jinquan Wen, Yuqing Cai, Fengting Lv, Xu Zeng, Qian Liu, Titus Masese, Chuanxiang Zhang, Xusheng Yang, Yanwen Ma, Haijiao Zhang, Zhen-Dong Huang

Summary: A new Bi-Ti-EG compound is reported as a high-capacity and stable anode material for potassium storage. It possesses a long-range disordered layered framework that can facilitate electrolyte ingress into Bi nanoparticles, thereby enhancing the storage capacity and cycling stability.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Improved material descriptors for bulk modulus in intermetallic compounds via machine learning

De-Xin Zhu, Kun-Ming Pan, Yuan Wu, Xiao-Ye Zhou, Xiang-Yue Li, Yong-Peng Ren, Sai-Ru Shi, Hua Yu, Shi-Zhong Wei, Hong-Hui Wu, Xu-Sheng Yang

Summary: In this study, the dominant factors influencing the bulk modulus of intermetallic compounds were identified as B-cal, dB(avg), and TIE. Surrogate machine learning models using these features achieved a 95% accuracy in predicting bulk modulus. Symbolic regression provided an expression for the relationship between bulk modulus and the screened features. These findings offer a new approach for optimizing and predicting the bulk moduli of intermetallic compounds.

RARE METALS (2023)

Article Metallurgy & Metallurgical Engineering

Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors

Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang

Summary: This study explored the influence of pre-strain and microstructures on the hydrogen trapping behaviors in 1-GPa high-strength martensitic steel. The results showed that the trapped reversible and trapped irreversible hydrogen contents significantly increased after a pre-strain of 5%. The microstructural evolution revealed that the presence of concomitant dislocation cell-twin duplex microstructure and tangled dislocations contributed to the enhanced hydrogen trapping.

ACTA METALLURGICA SINICA-ENGLISH LETTERS (2023)

Article Chemistry, Multidisciplinary

Role of Rare-Earth Alloys in Lithium Borohydride Regeneration from Hydrous Lithium Metaborate

Yongyang Zhu, Shaoyang Shen, Xu-Sheng Yang, Liming Zeng, Gary Tsui, Zheng-Long Xu, Qing Zhou, Renheng Tang, K. C. Chan

Summary: This study proposes a cost-effective method to regenerate LiBH4 by ball milling hydrous lithium metaborate with low-cost Mg-based alloys. The introduction of light rare-earth metals into Mg improves the regeneration kinetics of LiBH4 by facilitating the breakage of B-O and conversion of H+ into H-. A yield of 40% can be achieved for LiBO2 center dot 2H(2)O-CeMg12 system with a relatively short ball milling duration of 10 hours. The optimized regeneration of LiBH4 is believed to be efficient and economical, utilizing an intrinsic hydrogen source in LiBO2 center dot 2H(2)O and cheap reducing agents. This finding is expected to promote the widespread use of LiBH4 for hydrogen storage.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Materials Science, Multidisciplinary

The austenite to polygonal ferrite transformation in low-alloy steel: multi-phase-field simulation

Shaojie Lv, Hong-Hui Wu, Kaiyang Wang, Jiaming Zhu, Shuize Wang, Guilin Wu, Junheng Gao, Xu-Sheng Yang, Xinping Mao

Summary: The austenite to ferrite phase transformation is a crucial structural change in steel production, with the ferrite morphology and grain size significantly impacting the mechanical properties of steel materials. This study investigates the effects of cooling rate, prior austenite grain size (PAGS), and Mn content on the microstructure evolution of the austenite-to-polygonal ferrite phase transformation using a multi-phase-field model. The findings reveal that higher cooling rates enhance the driving force for the phase transformation and delay the process. Decreasing PAGS increases the proportion of austenite grain boundaries, providing more nucleation sites for polygonal ferrite and resulting in refined grain size. Furthermore, increased Mn content leads to significant grain refinement by reducing the transformation temperature. This work provides valuable insights for adjusting and designing desired microstructures of polygonal ferrite to enhance the mechanical performance of steel.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Nanoscience & Nanotechnology

Entropy-Stabilized Layered K0.6Ni0.05Fe0.05Mg0.05Ti0.05Mn0.725O2 as a High-Rate and Stable Cathode for Potassium-Ion Batteries

Yuqing Cai, Wenjing Liu, Fangfei Chang, Su Jin, Xusheng Yang, Chuanxiang Zhang, Ling Bai, Titus Masese, Ziquan Li, Zhen-Dong Huang

Summary: In this study, Ni, Fe, Mg, and Ti elements were introduced into Mn-based layered oxide to design a high-entropy compound HE-KMO, which demonstrated exceptional rate capability and cyclic stability.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Bionic Mineralized 3D-Printed Scaffolds with Enhanced In Situ Mineralization for Cranial Bone Regeneration

Ling Wang, Dongxuan Li, Yawen Huang, Ruiqi Mao, Boqing Zhang, Fengxiong Luo, Peiyang Gu, Ping Song, Xiang Ge, Jian Lu, Xusheng Yang, Yujiang Fan, Xingdong Zhang, Kefeng Wang

Summary: In this study, enhanced in situ mineralization through the combination of enzymatic and anion-boosted mineralization is applied, resulting in improved mineralization efficiency, mineral content, and mechanical properties. The mechanism of mineralization enhancement is investigated through computational calculations and in vitro mineralization experiments. The strategy is shown to have potential applications in cranial bone repair.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Environmental Sciences

MOF@Polydopamine-incorporated membrane with high permeability and mechanical property for efficient fouling-resistant and oil/water separation

Jiahui Zhao, Lin Cao, Xiao Wang, Haoling Huo, Huaijun Lin, Qiwei Wang, Xusheng Yang, Florian Vogel, Wei Li, Zhidan Lin, Peng Zhang

Summary: Metal organic frameworks (MOFs) have great potential in improving the performance of water treatment membranes. In this study, novel nanoparticles based on both nanoporous MOFs and organic PDA layer were used as dopants for PES ultrafiltration membranes. The resulting membranes showed enhanced permeability and anti-fouling properties, and demonstrated promising applications in oily sewage remediation.

ENVIRONMENTAL RESEARCH (2023)

Article Materials Science, Coatings & Films

Tribological and mechanical behavior of tantalum and its compounds reinforced PEEK coatings for TKR

Haoling Huo, Lin Cao, Jie Li, Huaijun Lin, Qiwei Wang, Xusheng Yang, Chuanjun Zang, Jingtao Zhang, Peng Zhang, Wei Li

Summary: In this study, modified coatings with PEEK and nanoparticles were utilized to enhance the strength and wear resistance. The addition of tantalum carbide nanoparticles showed the greatest improvement in mechanical behavior and wear resistance. The modified coatings have the potential to reduce stress on the titanium implant substrate and extend the lifespan of total knee replacement implants.

SURFACE & COATINGS TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Phase field simulation of eutectoid microstructure during austenite-pearlite phase transformation

Shaojie Lv, Hong-Hui Wu, Kaiyang Wang, Chaolei Zhang, Jiaming Zhu, Shuize Wang, Guilin Wu, Junheng Gao, Xu-Sheng Yang, Xinping Mao

Summary: In this study, the austenitic-pearlite transformation and its effects on microstructure evolution were investigated using a CALPHAD-based model. The results showed that the isothermal transformation temperature, cooling rate, and Mn content significantly influenced the pearlite transformation process, and the multi-component diffusion played a critical role in pearlite growth.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Materials Science, Multidisciplinary

Identifying intrinsic factors for ductile-to-brittle transition temperatures in Fe-Al intermetallics via machine learning

Dexin Zhu, Kunming Pan, Hong-Hui Wu, Yuan Wu, Jie Xiong, Xu-Sheng Yang, Yongpeng Ren, Hua Yu, Shizhong Wei, Turab Lookman

Summary: This study investigates the intrinsic factors influencing the ductile-to-brittle transition temperatures (DBTT) of Fe-Al intermetallic compounds and develops machine learning strategies for accurate prediction of DBTT. By utilizing selected features, surrogate models achieve a high accuracy of 95% and a functional expression capturing the relationship between DBTT and features is derived through symbolic regression.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Chemistry, Multidisciplinary

Transparent Oil-Water Separating Hydrophobic Sponge Prepared from a Pickering High Internal Phase Emulsion Stabilized by Octadecyltrichlorosilane Grafting Carbon Nanotubes

Yanyu Chen, Jie Li, Yingfei Yang, Junjie Yang, Huaijun Lin, Qiwei Wang, Xusheng Yang, Yuying Meng, Wei Li, Zhidan Lin, Peng Zhang

Summary: A novel porous polymer was prepared using the Pickering high internal phase emulsion (HIPE) template method for efficient oil-water separation from sewage. The addition of OTS-modified carbon nanotubes and surfactants improved the stability, mechanical properties, and separation efficiency of the polyHIPE. The 1%OTS-CNT polyHIPE exhibited high oil absorption capacity and maintained absorption efficiency even after multiple reapplications. Furthermore, the polymer showed superior antibacterial properties against E. coli and S. aureus.

LANGMUIR (2023)

Article Engineering, Environmental

Compositionally complex doping for low-V Ti-Cr-V hydrogen storage alloys

Yongyang Zhu, Xubo Li, Xu-Sheng Yang, Pengyun Chen, Gary Chi-Pong Tsui, Zheng-Long Xu, Renheng Tang, Fangming Xiao, Kangcheung Chan

Summary: Researchers have developed a low-cost BCC solid solution alloy with excellent activation performance and high effective hydrogen desorption capacity by using a new compositionally complex doping strategy. The synergistic effect of Nb, Fe, Co, Ni, and Mn elements has been confirmed to improve hydrogen storage performance.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Physical

Magnetic/optical assessments of RFeO3 (R=La, Pr, Nd, and Sm) ceramics: An experimental and theoretical discernment

J. Zamora, T. Bautista, N. S. Portillo-Velez, A. Reyes-Montero, H. Pfeiffer, F. Sanchez-Ochoa, H. A. Lara-Garcia

Summary: Experimental and DFT studies were conducted on the structural, magnetic, and optical properties of RFeO3 perovskites. The perovskites exhibited an orthorhombic crystal structure and weak ferromagnetic behavior. They were confirmed to be semiconductors with a bandgap of approximately 2.1 eV.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

The effect of Ti-based surface layer on AlSi thin film as a high-performance anode for the lithium-ion battery

Xianxiang Lv, Jing Jin, Weiguang Yang

Summary: By depositing TiN and TiO2 surface layers on AlSi films, the electrochemical performance of silicon-based anodes can be significantly improved, suppressing volume expansion and promoting the formation of a stable SEI layer.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Bifunctional phosphate-modulated Cu2O/CeO2 redox heterojunction: A promising approach for proficient CO2 reduction

Sharafat Ali, Haider Ali, Syedul Hasnain Bakhtiar, Sajjad Ali, Muhammad Zahid, Ahmed Ismail, Pir Muhammad Ismail, Amir Zada, Imran Khan, Huahai Shen, Rizwan Ullah, Habib Khan, Mohamed Bououdina, Xiaoqiang Wu, Fazal Raziq, Liang Qiao

Summary: The construction and optimization of redox-heterojunctions using a bifunctional phosphate as an electron-bridge demonstrated significant improvements in photo catalytic activity, including enhanced dispersion, reduced interfacial migration resistance, and increased abundance of active-sites.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Engineering heterogeneous synergistic interface and multifunctional cobalt-iron site enabling high-performance oxygen evolution reaction

Ren-Ni Luan, Na Xu, Chao-Ran Li, Zhi-Jie Zhang, Yu-Sheng Zhang, Jun Nan, Shu-Tao Wang, Yong-Ming Chai, Bin Dong

Summary: Extensive research has revealed that oxygen evolution reaction (OER) in alkaline conditions involves dynamic surface restructuring. The development and design of sulfide/oxide pre-catalysts can reasonably adjust the composition and structure after surface reconstruction, which is crucial for OER. This study utilized a simple two-step hydrothermal method to achieve in situ S leaching and doping, inducing the composition change and structure reconstruction of CoFe oxides. The transformed FeOOH and CoOOH exhibited excellent OER activity and could be easily mass-produced using low-cost iron based materials and simple methods.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Highly efficiency blue emissive from Bi3+ions in zero-dimensional organic bismuth halide for white LED applications

Jun'an Lai, Daofu Wu, Peng He, Kang An, Yijia Wang, Peng Feng, WeiWei Chen, Zixian Wang, Linfeng Guo, Xiaosheng Tang

Summary: Zero-dimensional organic-inorganic metal halides (OMHs) are gaining attention in the fabrication of light-emitting diodes due to their broad emission band and high photoluminescence quantum yield. This work synthesized a zero-dimensional organic tetraphenylphosphonium bismuth chloride (TBC) that showed efficient blue light emission, with the emission mechanism attributed to the transition of Bi3+ ions. White light-emitting diodes (WLEDs) were fabricated using TBC, along with green-emitting and red-emitting single crystals, achieving single-component white emissions. These findings demonstrate the different emission mechanism of ns2 ions-based OMHs and highlight the potential of bismuth-based OMHs in WLEDs applications.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Study on the wear resistance and mechanism of AlCrCuFe2NiTix high-entropy surfacing alloys

Xuewei Liang, Yunhai Su, Taisen Yang, Zhiyong Dai, Yingdi Wang, Xingping Yong

Summary: The revolutionary design concept of high-entropy alloys has brought new opportunities and challenges to the development of advanced metal materials. In this work, AlCrCuFe2NiTix high-entropy flux cored wires were prepared by combining the design idea of a high-entropy alloy with the characteristics of flux cored wire. AlCr-CuFe2NiTix high-entropy surfacing alloys were prepared using gas metal arc welding technology. The wear properties of the alloys were analyzed, and the phase composition, microstructure, strengthening mechanism, and wear mechanism were discussed. The results show that the alloys exhibit a dendritic microstructure with BCC/B2 + FCC phases. Increasing Ti content leads to the precipitation of Laves phase. The alloys show improved microhardness and wear resistance due to the precipitation of coherent B2 and Laves phases. However, excessive Ti addition results in the increase of Laves phase and reduced wear resistance of the alloys.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Facile synthesis of ternary g-C3N4/polyacrylic acid/CoFe2O4 nanocomposites for solar light irradiated photocatalytic and supercapacitor applications

M. Vadivel, M. Senthil Pandian, P. Ramasamy, Qiang Jing, Bo Liu

Summary: This work presents the enhanced photocatalytic and electrochemical performance of g-C3N4 assisted PAA on CoFe2O4 ternary nanocomposites. The incorporation of PAA and g-C3N4 improves the separation efficiency of photogenerated charge carriers, resulting in superior photocatalytic degradation and high specific capacitance values.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Investigation on bio-synthesized Ni- and Al-doped cobalt ferrite using lemon juice as eco-fuel

Vibhu T. Sivanandan, Ramany Revathy, Arun S. Prasad

Summary: In this study, pure and doped cobalt ferrite nanoparticles were prepared using the sol-gel auto-combustion method with the aid of lemon juice as eco-fuel. The crystal structure, lattice parameter, crystallite size, microstrain, optical parameters, and room temperature magnetic properties of the samples were analyzed. The effect of doping on the magnetic properties was also investigated.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Cu, Ni and Ag ions assisted preparation of nonpolar preferential oriented ZnO films with controlled morphology and optical properties

Qing Guo, Bowen Zhang, Benzhe Sun, Yang Qi

Summary: This study prepared ZnO films with various nonpolar preferred orientations using conventional chemical bath deposition method and characterized their growth process and mechanism. It was found that the type and concentration of nitrate could control the preferred orientation and surface roughness of ZnO films. Additionally, ZnO films with different preferred orientations exhibited different optical properties.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Characterization of magnetic FeCo particles with controlled bimetallic composition

Chong Zhang, Yan Liu, Zhaoyan Wang, Hang Yang

Summary: In this study, six bimetallic FeCo particles were synthesized via the hydrothermal method at different Fe:Co ratios. The Fe:Co ratio not only modulates the composition of the particles but also influences their structure and magnetic properties. The FeCo alloys showed a transformation from an Fe-based structure to a Co-based structure with increasing Co content. The Fe:Co ratio of 1:1 and 3:1 resulted in particles with the highest and lowest saturation magnetization, respectively.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Micro-alloying effects of Ta and B on nano-oxides and grain boundaries in 13CrWTi-ODS ferritic alloys

Jianning Zhang, Jing Li, Yiren Wang, Xiaodong Mao, Yong Jiang

Summary: We conducted a study on the formation of ultra-fine Y-Ti-Ta-O nano-oxides in Ta+B micro-alloyed 13CrWTi-ODS alloys using electron microscopy and first-principles calculations. The Y-Ti-Ta-O nano-oxides were found to be mainly Y2(Ti,Ta)2O7, with an average size of 7 nm and a number density of 6.8 x 1023 m-3. Excess boron was found to enhance the adhesion of some low-sigma grain boundaries but weaken the Fe/Y2Ti2O7 interface, while excess tantalum enhanced the Fe/Y2Ti2O7 interface but caused serious degradation of grain boundaries.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Nitrogen-doped reduced graphene oxide/black phosphorus quantum dot composites for electrocatalytic treatment of choroidal melanoma

Yirong Fang, Pei Cheng, Hang Yuan, Hao Zhao, Lishu Zhang

Summary: A new composite system of nitrogen-doped reduced graphene oxide and black phosphorus quantum dots has been developed for tumor therapy, showing improved electrochemical properties and stability. The system generates hydrogen peroxide and hydroxyl radical to effectively kill tumor cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Significantly enhanced magnetism in cobalt ferrite by manganese and terbium co-doping

Xiufang Qin, Yuanli Ma, Hui Zhang, Ting Zhang, Fang Wang, Xiaohong Xu

Summary: The structure and magnetism of cobalt ferrites after Mn2+-Tb3+ co-doping were studied. Co-doped samples exhibited cubic spinel structure and spherical shape of ferrite nanoparticles. The redistribution of Co2+ and Fe3+ ions between octahedral and tetrahedral sites was observed due to Mn2+-Tb3+ co-doping. The coercivity and magnetization saturation of co-doped samples were significantly improved, leading to a maximum energy product that is 190% higher than that of the un-doped sample.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

High-performance low-temperature solid oxide fuel cell with nanostructured lanthanum strontium cobaltite/yttria-stabilized zirconia cathode via advanced co-sputtering

Ho Yeon Lee, Wonjong Yu, Yoon Ho Lee

Summary: Recently, there has been an increasing interest in developing ultra-fine nanostructured electrodes with extensive reaction areas to enhance the performance and low-temperature operation of solid oxide fuel cells. The use of a refined approach involving co-sputtering metal alloys and oxide targets has demonstrated the feasibility of nano-columnar structures in perovskite-based electrodes, expanding the temperature range of thin film electrodes. This study systematically examines the effects of chamber pressure control in the co-sputtering process and identifies the intricate relationship between sputtering pressure and film structure. By fine-tuning the columnar growth in the electrode, significant improvements in performance and thermo-mechanical properties were achieved, resulting in high-performance all-sputtered solid oxide fuel cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Amorphous quaternary alloy nanoplates for efficient catalysis of hydrogen evolution reaction

Qianyun Bai, Xiaoxiao Yan, Da Liu, Kang Xiang, Xin Tu, Yanhui Guo, Renbing Wu

Summary: This study proposes a simple method to develop a non-precious transition metal-based electrocatalyst with high catalytic activity and robustness for the hydrogen evolution reaction. The as-synthesized electrode exhibits a low overpotential and high current density, indicating its potential in energy conversion.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)