4.6 Article

A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2020.106492

Keywords

Emission control; Fuzzy adaptive feature; Hybrid optimization algorithms; Self-adaptive particle swarm optimization; Differential evolution; Optimal power flow; Pareto optimal method; Practical constraints

Ask authors/readers for more resources

A novel fuzzy adaptive hybrid configuration algorithm is proposed to solve the multi-objective optimal power flow problem, taking into account practical limitations in real power systems. Results demonstrate the effectiveness of the proposed approach.
The optimal power flow (OPF) is a key tool in the planning and operation of power systems, and aims to optimize the operational costs involved in the production and transport of energy by adjusting control variables to meet operational, economic, and environmental constraints. To achieve this goal, a successful implementation of an expeditious and reliable optimization algorithm is crucial. To this end, this paper proposes and scrutinizes a novel fuzzy adaptive hybrid configuration oriented to a joint self-adaptive particle swarm optimization (SPSO) and differential evolution algorithms, namely FAHSPSO-DE, to address the multi-objective OPF (MOOPF) problem. For the sake of practicality, the objectives with innate differences such as total fuel cost, active power losses, and the emission are selected. Due to the practical limitations in real power systems, additional restrictions, including valve-point effect, multi-fuel characteristic, and prohibited operating zones, are also taken into account. In order to validate the performance of the proposed approach, ten various benchmark functions are examined, while three IEEE standard systems such as IEEE 30-, 57-, and 118-bus test systems are employed to demonstrate the performance and suitability of the proposed approach in solving the OPF problem expeditiously. Results have been compared with those in the literature and show the effectiveness of our proposal in handling different scales, multi-objective, and non-convex optimization problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available