4.5 Article

Analysis of a Hybrid Solar-Assisted Trigeneration System

Journal

ENERGIES
Volume 9, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/en9090705

Keywords

microcogeneration; trigeneration system; solar collector; dynamic simulation; solar energy; hybrid system

Categories

Ask authors/readers for more resources

A hybrid solar-assisted trigeneration system is analyzed in this paper. The system is composed of a 20 m(2) solar field of evacuated tube collectors, a natural gas fired micro combined heat and power system delivering 12.5 kW of thermal power, an absorption heat pump (AHP) with a nominal cooling power of 17.6 kW, two storage tanks (hot and cold) and an electric auxiliary heater (AH). The plant satisfies the energy demand of an office building located in Naples (Southern Italy). The electric energy of the cogenerator is used to meet the load and auxiliaries electric demand; the interactions with the grid are considered in cases of excess or over requests. This hybrid solution is interesting for buildings located in cities or historical centers with limited usable roof surface to install a conventional solar heating and cooling (SHC) system able to achieve high solar fraction (SF). The results of dynamic simulation show that a tilt angle of 30 degrees maximizes the SF of the system on annual basis achieving about 53.5%. The influence on the performance of proposed system of the hot water storage tank (HST) characteristics (volume, insulation) is also studied. It is highlighted that the SF improves when better insulated and bigger HSTs are considered. A maximum SF of about 58.2% is obtained with a 2000 L storage, whereas the lower thermal losses take place with a better insulated 1000 L tank.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available