4.7 Article

Cadmium toxicity in Salvia sclarea L.: An integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 209, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.111851

Keywords

Hyperaccumulation; Chlorophyll fluorescence; Heavy metal tolerance; Photosynthetic function; Phenolic content; Pigments; Phytostabilization

Funding

  1. Bulgarian Academy of Sciences, Bulgaria
  2. Aristotle University of Thessaloniki, Greece

Ask authors/readers for more resources

This study investigated the integrative responses of Salvia sclarea plants exposed to high cadmium supply, revealing that plants employ multiple mechanisms to protect the function of the photosynthetic apparatus, including increased phenolic and anthocyanin contents, enhanced non-photochemical quenching, and accelerated cyclic electron transport around photosystem I.
The herbal plant Salvia sclarea L. (clary sage) is classified to cadmium (Cd) accumulators and considered as a potential plant for phytoremediation of heavy metal polluted soil. However, the effect of Cd only treatment on the function of the photosynthetic apparatus of S. sclarea, as well as the mechanisms involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of S. sclarea plants exposed to a high Cd supply (100 mu M) for 3 and 8 days by investigating element nutrient uptake, oxidative stress markers, pigment composition, photosynthetic performance and leaf structure. Measurements of the functional activities of photosystem I (PSI, by P700 photooxidation), photosystem II (PSII, by chlorophyll fluorescence parameters), the oxygen-evolving complex (oxygen evolution by Joliotand Clark-type electrodes), as well as the leaf pigment and phenolic contents, were used to evaluate the protective mechanisms of the photosynthetic apparatus under Cd stress. Data suggested that the molecular mechanisms included in the photosynthetic tolerance to Cd toxicity involve strongly increased phenolic and anthocyanin contents, as well as an increased non-photochemical quenching and accelerated cyclic electron transport around PSI up to 61%, which protect the function of the photosynthetic apparatus under stress. Furthermore, the tolerance of S. sclarea to Cd stress is also associated with increased accumulation of Fe in leaves by 25%. All the above, clearly suggest that S. sclarea plants employ several different mechanisms to protect the function of the photosynthetic apparatus against Cd stress, which are discussed here.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available