4.7 Article

A multi-objective genetic algorithm strategy for robust optimal sensor placement

Ask authors/readers for more resources

This study introduces a new approach based on multi-objective optimization and genetic algorithms for a sensor configuration strategy driven by damage scenarios. The aim is to enhance the robustness of sensor placement for damage detection after potential catastrophic events. The strategy is tested on the bell tower of the Santa Maria and San Giovenale Cathedral in Fossano, Italy, and compared to other classic strategies and a standard GA approach with a single objective function.
The performance of a monitoring system for civil buildings and infrastructures or mechanical systems depends mainly on the position of the deployed sensors. At the current state, this arrangement is chosen through optimal sensor placement (OSP) techniques that consider only the initial conditions of the structure. The effects of the potential damage are usually completely neglected during its design. Consequently, this sensor pattern is not guaranteed to remain optimal during the whole lifetime of the structure, especially for complex masonry buildings in high seismic hazard zones. In this paper, a novel approach based on multi-objective optimization (MO) and genetic algorithms (GAs) is proposed for a damage scenario driven OSP strategy. The aim is to improve the robustness of the sensor configuration for damage detection after a potentially catastrophic event. The performance of this strategy is tested on the case study of the bell tower of the Santa Maria and San Giovenale Cathedral in Fossano (Italy) and compared to other classic OSP strategies and a standard GA approach with a single objective function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available