4.6 Article

Implementation of Cosmic Ray Energy Spectrum (CRESP) Algorithm in PIERNIK MHD Code. I. Spectrally Resolved Propagation of Cosmic Ray Electrons on Eulerian Grids

Journal

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
Volume 253, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/1538-4365/abd16f

Keywords

Galactic cosmic rays; Magnetohydrodynamical simulations; Computational methods

Funding

  1. National Science Center under the OPUS [2015/19/B/ST9/02959]
  2. Foundation for Polish Science via the FIRST-TEAM grant [POIR.04.04.00-00-5D21/18-00]

Ask authors/readers for more resources

The efficient algorithm presented tracks the spectral evolution of cosmic rays in MHD simulations of the galactic interstellar medium. It relies on a two-moment piece-wise power-law method for CR transport, with variable momentum boundaries that adjust in response to CR momentum gains or losses. The algorithm has been validated through elementary tests and demonstrated consistent results with analytical solutions in more complex simulations.
We present an efficient algorithm to follow spectral evolution of cosmic rays (CR) coupled with an MHD system on Eulerian grids. The algorithm is designed for studies of CR energy spectrum evolution in MHD simulations of a galactic interstellar medium. The base algorithm for CR transport relies on the two-moment piece-wise power-law method, known also as coarse-grained momentum finite volume (CGMV), for solving the Fokker-Planck CR transport equation, with a low number of momentum bins extending over several decades of the momentum coordinate. We propose an extension of the CGMV with a novel feature that allows momentum boundaries to change in response to CR momentum gains or losses near the extremes of the population distribution. Our extension involves a special treatment of momentum bins containing spectral cutoff. Contrary to the regular bins of fixed width, those bins have variable width, and their outer edges coincide with spectral cutoffs. The cutoff positions are estimated from the particle number density and energy density in the outer bins for an assumed small value of an additional parameter representing the smallest physically significant level of CR spectral energy density. We performed a series of elementary tests to validate the algorithm and demonstrated, whenever possible, that results of the test simulations correspond, with a reasonable accuracy, to the results of analogous analytical solutions. In a more complex test of the galactic CR-driven wind problem, we obtained results consistent with expectations regarding the effects of advection, diffusion, adiabatic, and synchrotron cooling of a CR population.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available