4.8 Article

Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed

Journal

NPJ COMPUTATIONAL MATERIALS
Volume 6, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41524-020-00457-6

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [11972383, 11672339, 81827802]
  2. Guangzhou Science and Technology key Project [201707020002]
  3. National Youth Talent Support Program
  4. Guangdong Natural Science Funds for Distinguished Young Scholar

Ask authors/readers for more resources

Molecular rotors with controllable functions are promising for molecular machines and electronic devices. Especially, fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications. However, the key to molecular rotor-based electronic devices comes down to a trade-off between fast rotational speed and thermal stability. Fast rotation in molecular rotor requires a small energy barrier height, which disables its controllability under thermal excitation at room temperature. To overcome this trade-off dilemma, we design molecular rotors with co-axial polar rotating groups to achieve wide-range mechanically controllable rotational speed. The interplay between polar rotating groups and directional mechanical load enables a stop-go system with a wide-range rotational energy barrier. We show through density functional calculations that directional mechanical load can modulate the rotational speed of designed molecular rotors. At a temperature of 300 K, these molecular rotors operate at low rotational speed in native state and accelerates tremendously (up to 10(19)) under mechanical load.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available