4.6 Article

Photocatalytic Degradation of Quinoline Yellow over Ag3PO4

Journal

CATALYSTS
Volume 10, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/catal10121461

Keywords

Ag3PO4; visible light; dye; semi-conductor characterization; photoproducts

Funding

  1. Franco-Algerien PROFAS B + program

Ask authors/readers for more resources

In this study, the ability of Ag3PO4 to achieve the photocatalytic degradation of quinoline yellow (QY) a hazardous and recalcitrant dye, under UVA and visible light was investigated. The photocatalyst Ag3PO4 was synthesized through a precipitation method, and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), BET Brunauer-Emmett-Teller (BET) analysis, UV-Differential Reflectance Spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR). Ag3PO4 could successfully induce the photocatalytic degradation of QY under UVA and visible light. Optimal parameters were 0.5 g center dot L-1 of the catalyst, 20 ppm of QY and pH similar to 7. Ag3PO4 was 1.6-times more efficient than TiO2 Degussa P25 under UVA light in degrading QY. Total organic carbon (TOC) analyses confirmed the almost complete QY mineralization. At least eight intermediate degradation products were identified by liquid chromatography coupled to high resolution mass spectrometry. The stability of Ag3PO4 was satisfactory as less than 5% Ag metal appeared in XRD analyses after 3 reuse cycles. These results show that under optimized conditions Ag3PO4 can efficiently achieve quinolone yellow mineralization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available