4.7 Article

Novel TiO2 Nanoparticles/Polysulfone Composite Hollow Microspheres for Photocatalytic Degradation

Journal

POLYMERS
Volume 13, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/polym13030336

Keywords

hollow composite microspheres; polysulfone; titanium oxide nanoparticles; photocatalytic degradation materials

Funding

  1. Research Startup program of Donghua University [285-07-005702]
  2. Key-Area Research and Development Program of Guangdong Province [2020B010182002]

Ask authors/readers for more resources

The study successfully prepared TiNPs/PSF composite microspheres with good ability to degrade methyl blue, and the porosity, density, and photoactivity of the composite microspheres are influenced by the loading amount of TiO2.
Nanosized titanium oxide (TiO2) material is a promising photocatalyst for the degradation of organic pollutants, whereas the difficulty of its recycling hinders its practical application. Herein, we reported the preparation of a novel titanium oxide/polysulfone (TiNPs/PSF) composite hollow microspheres by the combination of Pickering emulsification and the solvent evaporation technique and their application for the photodegradation of methyl blue (MB). P25 TiO2 nanoparticles dispersed on the surface of PSF microspheres. The porosity, density and photoactivity of the TiNPs/PSF composite microsphere are influenced by the TiO2 loading amount. The composite microsphere showed good methyl blue (MB) removal ability. Compared with TiO2 P25, and PSF, a much higher MB adsorption speed was observed for TiNPs/PSF microspheres benefited from their porous structure and the electrostatic attractions between the MB+ and the negatively charged PSF materials, and showed good degradation efficiency. For TiNPs/PSF composite microsphere with density close to 1, a 100% MB removal (10 mg L-1) within 120 min at a catalyst loading of 2.5 g L-1 can be obtained under both stirring and static condition, due to well dispersing of TiO2 particles on the microsphere surface and its stable suspending in water. For the non-suspended TiNPs/PSF composite microsphere with density bigger than 1, the 100% MB removal can be only obtained under stirring condition. The removal efficiency of MB for the composite microspheres retained 96.5%, even after 20 cycles. Moreover, this composite microsphere also showed high MB removal ability at acidic condition. The high catalysis efficiency, excellent reusability and good stability make this kind of TiNPs/PSF composite microsphere a promising photocatalyst for the water organic pollution treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available