4.8 Article

Site-specific incorporation of citrulline into proteins in mammalian cells

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-20279-w

Keywords

-

Funding

  1. NIH [R35 GM118112, R35 GM136437]
  2. University of Massachusetts Medical School

Ask authors/readers for more resources

The study presents a technology for site-specific incorporation of citrulline into proteins in mammalian cells. Incorporating citrulline into proteins can significantly reduce enzyme activity.
Citrullination is a post-translational modification (PTM) of arginine that is crucial for several physiological processes, including gene regulation and neutrophil extracellular trap formation. Despite recent advances, studies of protein citrullination remain challenging due to the difficulty of accessing proteins homogeneously citrullinated at a specific site. Herein, we report a technology that enables the site-specific incorporation of citrulline (Cit) into proteins in mammalian cells. This approach exploits an engineered E. coli-derived leucyl tRNA synthetase-tRNA pair that incorporates a photocaged-citrulline (SM60) into proteins in response to a nonsense codon. Subsequently, SM60 is readily converted to Cit with light in vitro and in living cells. To demonstrate the utility of the method, we biochemically characterize the effect of incorporating Cit at two known autocitrullination sites in Protein Arginine Deiminase 4 (PAD4, R372 and R374) and show that the R372Cit and R374Cit mutants are 181- and 9-fold less active than the wild-type enzyme. This technology possesses the potential to decipher the biology of citrullination. Citrullination of arginine is crucial for several physiological processes. Here the authors report the site-specific incorporation of citrulline into proteins in mammalian cells using an engineered tRNA synthetase/tRNA pair and a photocaged-citrulline.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available