4.7 Article

Preparation and characterization of superabsorbent polymers (SAPs) surface-crosslinked with polycations

Journal

REACTIVE & FUNCTIONAL POLYMERS
Volume 157, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.reactfunctpolym.2020.104774

Keywords

Superabsorbent polymer; Surface-crosslinking; Polycation; Poly(acrylic acid)-based hydrogel; Micro-CT analysis

Funding

  1. LG chem Ltd.
  2. National Research Foundation of Korea - Korea government (Ministry of Science and ICT) [NRF-2017M3D1A1039289, 2017M3A7B4041798, 2018R1A2A3075287]
  3. Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) - Ministry of Health & Welfare, Republic of Korea [HI15C1744]
  4. Institute of Convergence Science (ICONS) at Yonsei University
  5. National Research Foundation of Korea [2018R1A2A3075287, 2017M3A7B4041798] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

For the application of superabsorbent polymer (SAP) particles in personal hygiene products such as disposable diapers, the SAP surface is additionally crosslinked to minimize gel blocking and enhance absorbency under external pressure. Physically surface-crosslinked poly(acrylic acid)(PAA)-based SAP microspheres were prepared using polycations (branched polyethylene imine (bPEI) and polyamidoamine (PAMAM)). Compared with chemical crosslinking, which requires a high temperature and prolonged reaction, physical crosslinking via electrostatic interaction between the polycations and negatively charged PAA chains was achieved within 20 min at room temperature. The polycation-crosslinked SAP particles had a rougher surface and lower water absorption capacity. The thickness of the physically crosslinked surface, visualized using fluorescence labeled polycations, increased with increasing polycation concentration and reaction time, eventually reaching saturation. PAMAM produced mechanically stronger and thicker surface-crosslinking than bPEI, owing to its lower molecular weight. Micro-CT analysis of the collective swelling behavior of a gel bed packed with the SAP particles confirmed that the shapes of the SAP particles crosslinked with polycations were better maintained during swelling and there was a greater void fraction in the packed gel bed than with the use of bare SAP particles, which might minimize gel blocking and improve the permeability of fluid through gel bed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available