4.8 Article

Visualizing vinca alkaloids in the petal of Catharanthus roseus using functionalized titanium oxide nanowire substrate for surface-assisted laser desorption/ionization imaging mass spectrometry

Journal

PLANT JOURNAL
Volume 105, Issue 4, Pages 1123-1133

Publisher

WILEY
DOI: 10.1111/tpj.15092

Keywords

titanium oxide; surface-assisted laser desorption; ionization; imaging mass spectrometry; Catharanthus roseus; vinca alkaloids; technical advance

Categories

Funding

  1. Ministry of Science and Technology (MOST), R.O.C. [104-2320-B-001-019-MY2, 107-2321-B-001-038, 108-2636-M-002-008-]
  2. Center for Emerging Materials and Advanced Devices, National Taiwan University (NTU)

Ask authors/readers for more resources

Imaging mass spectrometry (IMS) is a powerful technique for analyzing various molecular species with high spatial resolution and low detection limits. Functionalized TiO2 nanowire substrate-based surface-assisted laser desorption/ionization (SALDI) is an effective complementary technique to MALDI-MS for detecting low-molecular-weight species in plant tissues.
Imaging mass spectrometry (IMS) is a powerful technique that enables analysis of various molecular species at a high spatial resolution with low detection limits. In contrast to the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) approach, surface-assisted laser desorption/ionization (SALDI) can be more effective in the detection of small molecules due to the absence of interfering background signals in low m/z ranges. We developed a functionalized TiO2 nanowire as a solid substrate for IMS of low-molecular-weight species in plant tissues. We prepared TiO2 nanowires using an inexpensive modified hydrothermal process and subsequently functionalized them chemically with various silane analogs to overcome the problem of superhydrophilicity of the substrate. Chemical modification changed the selectivity of imprinting of samples deposited on the substrate surface and thus improved the detection limits. The substrate was applied to image distribution of the metabolites in very fragile specimens such as the petal of Catharanthus roseus. We observed that the metabolites are distributed heterogeneously in the petal, which is consistent with previous results reported for the C. roseus plant leaf and stem. The intermediates corresponding to the biosynthesis pathway of some vinca alkaloids were clearly shown in the petal. We also performed profiling of petals from five different cultivars of C. roseus plant. We verified the semi-quantitative capabilities of the imprinting/imaging approach by comparing results using the LC-MS analysis of the plant extracts. This suggested that the functionalized TiO2 nanowire substrate-based SALDI is a powerful technique complementary to MALDI-MS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available