4.4 Article

Intestinal Electrical Stimulation Enhances Release of Postprandial Incretin Hormones Via Cholinergic Mechanisms

Journal

OBESITY SURGERY
Volume 31, Issue 5, Pages 1957-1966

Publisher

SPRINGER
DOI: 10.1007/s11695-021-05228-w

Keywords

Type 2 diabetes mellitus; Intestinal electrical stimulation; Incretin hormones; GLP-1; GIP

Categories

Funding

  1. NIH [R01DK107754]

Ask authors/readers for more resources

Intestinal electrical stimulation (IES) reduces postprandial blood glucose by enhancing the release of GLP-1 and GIP mediated via the cholinergic mechanism.
Introduction Intestinal electrical stimulation (IES) has been reported to reduce body weight and improve glucose tolerance in obese and diabetic rats. Our study aimed to investigate possible IES mechanisms involving incretin hormones using intraduodenal glucose infusion in rats. We hypothesized that the enhanced release of postprandial glucagon-like peptide-1 (GLP-1) at early phase by IES was mediated through neuro/paracrine mechanisms involving the vagal nerve and glucose-dependent insulinotropic peptide (GIP). Methods Fifteen normal male Sprague-Dawley rats chronically implanted with duodenal electrodes for IES, and an intra-duodenum catheter for the infusion of glucose were studied in a series of sessions with IES of different parameters with and without atropine and M3 receptor antagonist. Blood samples were collected via the tail vein for the measurement of blood glucose, and plasma GLP-1, and GIP. Results (1) Compared to sham-IES, IES of 0.3 ms reduced blood glucose by 16.5-28.4% between 30 and 120 min (all time points p < 0.05), and IES of 3-ms reduced blood glucose at 60 (12.6%) and 90 min (11.8%). IES of 0.3 ms showed a greater hypoglycemic effect than 3 ms (p = 0.024) at 30 min. (2) IES elevated plasma GLP-1 with 0.3 ms (p = 0.001) and with 3 ms p = 0.03). (3) IES substantially elevated plasma GIP with 0.3 ms (p = 0.002) and with 3 ms (p < 0.001). (4) Pretreatment of atropine and the M3 receptor antagonist 4-DAMP blocked the effects of IES on GLP-1, GIP, and blood glucose. Conclusions IES reduces postprandial blood glucose by enhancing the release of GLP-1 and GIP mediated via the cholinergic mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available