4.6 Article

Effects of irradiation of ZnO/CdS/Cu2ZnSnSe4/Mo/glass solar cells by 10 MeV electrons on photoluminescence spectra

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mssp.2020.105301

Keywords

-

Funding

  1. Ministry of Science and Higher Education of the Russian Federation [AAAA-A18118020290104-2]
  2. European Union through the European Regional Development Fund [TK141]

Ask authors/readers for more resources

Solar cells with the ZnO/CdS/Cu2ZnSnSe4/Mo/glass structure were studied using photoluminescence (PL) before and after irradiation with high energy electrons. The PL spectra showed dominant bands from different layers, and irradiation led to a decrease in intensity without affecting the band tails. The red shift rate of the dominant band increased after irradiation, suggesting the formation of deep non-radiative traps.
Solar cells with the structure ZnO/CdS/Cu2ZnSnSe4/Mo/glass were studied by photoluminescence (PL) before and after irradiation with a dose of 1.8 x 10(15) cm(-2) and then 5.4 x 10(15) cm(-2) of 10 MeV electrons carried out at 77 K in liquid nitrogen bath. The low temperature PL spectra before irradiation revealed two bands, a broad and asymmetrical dominant band at 0.94 eV from the CZTSe layer and a lower intensity high energy band (HEB) at 1.3 eV, generated by defects in the CdS buffer layer. Analysis of the excitation intensity and temperature dependencies suggested that the dominant band is free-to-bound (FB): the recombination of free electrons with holes localised at acceptors whose energy levels are affected by potential fluctuations of the valence band due to high concentrations of randomly distributed charged defects. Irradiation did not induce any new band in the examined spectral range (from 0.5 mu m to 1.65 mu m) but reduced the intensity of both bands in the PL spectra measured at 77 K without warming the cells. The higher the dose the greater was the reduction. After this the cells were warmed to 300 K and moved to a variable temperature cryostat to measure temperature dependencies of the PL spectra. After irradiation the red shift rate of the FB band with temperature rise was found to increase. Electrons displace atoms in the lattice creating primary defects: interstitials and vacancies. These defects recombine during and shortly after irradiation forming secondary defect complexes which work as deep non-radiative traps of charge carriers reducing the PL intensity and increasing the rate of the temperature red shift. Irradiation did not affect the mean depth of the band tails estimated from the shape of the low energy side of the dominant PL band.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available