4.2 Article

ORGANIC AND INORGANIC GEOCHEMICAL AND MINERALOGICAL ASSESSMENTS OF THE SILURIAN AKKAS FORMATION, WESTERN IRAQ

Journal

JOURNAL OF PETROLEUM GEOLOGY
Volume 44, Issue 1, Pages 69-96

Publisher

WILEY
DOI: 10.1111/jpg.12779

Keywords

Akkas Formation; Iraq; Silurian; source rocks; unconventional reservoirs; hot shales; Palaeozoic; trace elements

Funding

  1. Arab Fund for Economic and Social Development (AFESD), Kuwait
  2. CASP's Palaeozoic of Arabia Project

Ask authors/readers for more resources

The study analyzed the source rock potential of Akkas Formation shales from the Akkas-1 and Akkas-3 wells in western Iraq. Results showed that the upper hot shale interval in the lower Hoseiba Member has good source rock characteristics, while cold shales from the Qaim Member have limited source rock potential.
The Silurian Akkas Formation has been reported and described only in the subsurface of western Iraq. The formation is divided into the lower Hoseiba Member, which contains two high-TOC hot shale intervals that together are around 60 m thick, and the overlying Qaim Member that is composed of lower-TOC cold shales. This study investigates the source rock potential of Akkas Formation shales from the Akkas-1and Akkas-3 wells in western Iraq and assesses the relationship between their mineral and elemental contents and their redox depositional conditions and thermal maturity. Twenty-six shale samples from both members of the Akkas Formation from the Akkas-1and Akkas-3 wells were analysed. The results showed that the upper, similar to 20 m thickhot shale interval in the lower Hoseiba Member has good source rock characteristics with an average TOC content of 5.5 wt% and a mean Rock-Eval S-2 of 10 kg/tonne. Taken together, the two hot shale intervals and the intervening cold shale of the Hoseiba Member are similar to 125-150 m thick and have an average TOC of 3.3 wt% and mean S-2 of 6.2 kg/tonne. The samples from the Hoseiba Member contain mixed Type II / III or Type III kerogen with an HI of up to 296 mgS(2)/gTOC. Visual organic-matter analysis showed that the samples contain dark brown, opaque amorphous organic matter with minor amounts of vitrinite-like and algal (Tasmanites) material. Pyrolysis - gas chromatography undertaken on a single sample indicated a mature (or higher) algal-dominated Type II kerogen. High spore and acritarch colour index values and weak or absent fluorescence similarly suggest that the lower part of the Akkas Formation is late mature to early post-mature for oil generation. Cold shales from the Qaim Member in the Akkas-3 well may locally have good source rock potential, while samples from the upper part of the Qaim Member from the Akkas-1 well have little source rock potential. Varied results from this interval may reflect source rock heterogeneity and limited sample coverage. Mineralogically, all the shale samples studied were dominated by clay minerals - illite and kaolinite with minor amounts of chlorite and illite mixed layers. Non-clay minerals included quartz, carbonates, feldspars and pyrite along with rare apatite and anatase. Palaeoredox proxies confirmed the general link between anoxia and hot shale deposition; however, there was no clear relationship between TOC and U suggesting that another carrier of U could be present. Rare Earth Element (REE) contents suggested a slight change in sediment provenance during the deposition of the Akkas Formation. The presence of common micropores and fractures identified under SEM indicates that these shales could become potential unconventional reservoirs following hydraulic fracturing. Evidence for the dissolution of carbonate minerals was present along fractures, suggesting the possible passage of diagenetic fluids. Palynological analysis combined with existing graptolite studies support a Wenlock - Pridoli/Ludlow age for the Akkas hotshales. This is younger than many other regional hot shale age estimates and warrants further detailed investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Geosciences, Multidisciplinary

Facies and depositional environments of the Devonian-Carboniferous succession of Iraq

Ali Al-Juboury, Aboosh Al-Hadidy

GEOLOGICAL JOURNAL (2008)

Article Geosciences, Multidisciplinary

Petrology and depositional evolution of the Paleozoic rocks of Iraq

Ali I. Al-Juboury, Aboosh H. Al-Hadidy

MARINE AND PETROLEUM GEOLOGY (2009)

Article Geosciences, Multidisciplinary

Mineralogical and geochemical characteristics of the Paleozoic source rocks, Akkas gas field, Western Desert of Iraq: Implications for their origin, maturation and Ordovician-Silurian transition

Ibrahim Q. Mohammed, Sherif Farouk, Hassan Baioumy, Naira Magdy Lotfy, Aboosh Hussain Al-Hadidy

MARINE AND PETROLEUM GEOLOGY (2020)

Article Geosciences, Multidisciplinary

Organic petrography of Ordovician-Silurian rocks and their implications to hydrocarbon generation in the Akkas-1 well, western Iraq: New evidence for the Ordovician Gloeocapsomorpha and glaciation events

Walid A. Makled, Sherif Farouk, Aboosh Hussain Al-Hadidy, Ibrahim Q. Mohammed, Fadhil Ahmed Ameen Lawa

Summary: The Ordovician-Silurian hot shales in the Akkas Field are proven to be a source of hydrocarbon, with potential for liquid hydrocarbon generation. The study reveals the first record of important oil-prone organic matter in the region, with evidence of seasonal changes and evolution of telalginite particles.

MARINE AND PETROLEUM GEOLOGY (2021)

Review Geosciences, Multidisciplinary

Paleozoic stratigraphic lexicon and hydrocarbon habitat of Iraq

Aboosh H. Al-Hadidy

GEOARABIA (2007)

No Data Available