4.7 Article

Pairs of amino acids at the P- and A-sites of the ribosome predictably and causally modulate translation-elongation rates

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 432, Issue 24, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2020.10.030

Keywords

translation; elongation rates; amino acid pairs; ribosome profiling

Funding

  1. DKFZ NCT3.0 Integrative Project in Cancer Research [NCT3.0_2015.54 DysregPT]
  2. European Research Council [TransFold 743118]
  3. Deutsche Forschungsgemeinschaft [SFB 1036]
  4. National Institutes of Health MIRA R35 [1R35GM124818-01]
  5. National Science Foundation ABI [1759860]
  6. Royal Society [URF\R1\201461]
  7. Div Of Biological Infrastructure
  8. Direct For Biological Sciences [1759860] Funding Source: National Science Foundation

Ask authors/readers for more resources

Variation in translation-elongation kinetics along a transcript's coding sequence plays an important role in the maintenance of cellular protein homeostasis by regulating co-translational protein folding, localization, and maturation. Translation-elongation speed is influenced by molecular factors within mRNA and protein sequences. For example, the presence of proline in the ribosome's P- or A-site slows down translation, but the effect of other pairs of amino acids, in the context of all 400 possible pairs, has not been characterized. Here, we study Saccharomyces cerevisiae using a combination of bioinformatics, mutational experiments, and evolutionary analyses, and show that many different pairs of amino acids and their associated tRNA molecules predictably and causally encode translation rate information when these pairs are present in the A- and P-sites of the ribosome independent of other factors known to influence translation speed including mRNA structure, wobble base pairing, tripeptide motifs, positively charged upstream nascent chain residues, and cognate tRNA concentration. The fast-translating pairs of amino acids that we identify are enriched four-fold relative to the slow-translating pairs across Saccharomyces cerevisiae's proteome, while the slow-translating pairs are enriched downstream of domain boundaries. Thus, the chemical identity of amino acid pairs contributes to variability in translation rates, elongation kinetics are causally encoded in the primary structure of proteins, and signatures of evolutionary selection indicate their potential role in co-translational processes. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available