4.7 Article

Unsupervised deep learning for super-resolution reconstruction of turbulence

Journal

JOURNAL OF FLUID MECHANICS
Volume 910, Issue -, Pages -

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2020.1028

Keywords

turbulence simulation

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2017R1E1A1A03070282]
  2. National Research Foundation of Korea [2017R1E1A1A03070282] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

This study presents an unsupervised learning model using CycleGAN technology for super-resolution reconstruction of turbulent flows with unpaired data. The model demonstrates high performance in recovering original flow fields, reconstructing full-resolution fields, and generating DNS-resolution flow fields. The research also shows the feasibility of unsupervised learning in turbulence data, showcasing potential for wide application of super-resolution reconstruction techniques.
Recent attempts to use deep learning for super-resolution reconstruction of turbulent flows have used supervised learning, which requires paired data for training. This limitation hinders more practical applications of super-resolution reconstruction. Therefore, we present an unsupervised learning model that adopts a cycle-consistent generative adversarial network (CycleGAN) that can be trained with unpaired turbulence data for super-resolution reconstruction. Our model is validated using three examples: (i) recovering the original flow field from filtered data using direct numerical simulation (DNS) of homogeneous isotropic turbulence; (ii) reconstructing full-resolution fields using partially measured data from the DNS of turbulent channel flows; and (iii) generating a DNS-resolution flow field from large-eddy simulation (LES) data for turbulent channel flows. In examples (i) and (ii), for which paired data are available for supervised learning, our unsupervised model demonstrates qualitatively and quantitatively similar performance as that of the best supervised learning model. More importantly, in example (iii), where supervised learning is impossible, our model successfully reconstructs the high-resolution flow field of statistical DNS quality from the LES data. Furthermore, we find that the present model has almost universal applicability to all values of Reynolds numbers within the tested range. This demonstrates that unsupervised learning of turbulence data is indeed possible, opening a new door for the wide application of super-resolution reconstruction of turbulent fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available