4.7 Article

Functional diversity of decomposers modulates litter decomposition affected by plant invasion along a climate gradient

Journal

JOURNAL OF ECOLOGY
Volume 109, Issue 3, Pages 1236-1249

Publisher

WILEY
DOI: 10.1111/1365-2745.13548

Keywords

carbon cycling; ecosystem process; invasive species; nutrient cycling; plant– reciprocal litter transplant; plant– soil interactions; soil fauna

Funding

  1. National Natural Science Foundation of China [31670450, 31971461, 31760177]
  2. National Key R&D Program of China [2018YFC0507301, 2018YFD060010402]
  3. Fundamental Research Funds for ICBR [1632018002, 1632018004, 1632019006]

Ask authors/readers for more resources

Plant invasion can affect litter decomposition by altering litter composition and the functional diversity of decomposers, with potential differences under varied climate conditions. The presence of macrofauna can accelerate litter decomposition and increase climatic sensitivities, while leading to decreased nitrogen use efficiency.
Litter decomposition is fundamental to carbon (C) and nutrient cycling in ecosystems, which could be altered by plant invasion. The impacts of plant invasion on litter decomposition are generally predicted by trait difference between leaf litters of invasive and non-invasive species. However, plant invasion not only changes litter composition, but might also increase the activity or change the functional diversity of decomposers to alter litter decomposition, which is barely studied, and the effect could be different under varied climate conditions. We studied decomposition of litters from non-invasive and invasive native plants, as affected by litter treatments (in a mixture or alone) and decomposer organisms of different functional groups (by controlling the mesh size of litterbags), in sites with or without an invasive woody grass, Moso bamboo Phyllostachys edulis, at seven locations across a climate gradient. We show that greater decomposer functional diversity, particularly the presence of macrofauna, accelerated the cycling of litter C and nitrogen (N), increased the climatic sensitivities of decomposition rates, but decreased the N use efficiency of decomposers (represented by litter C to N loss ratio). Litter decomposed in mixtures decomposed faster (by 9.5%) and had more N loss (by 28.9%) than that of the monoculture, regardless of the functional diversity of decomposers. In contrast, the invasion of Moso bamboo slowed decomposition and decreased N use efficiency; this negative effect could be reversed when macrofauna were excluded from the decomposition process, which challenges the nutrient facilitation hypothesis. Bamboo invasion depressed the climatic sensitivity of decomposer functional groups when macrofauna were present but not when macrofauna were excluded. Synthesis. We found that the functional diversity of decomposer organisms modulates and largely determines litter decomposition affected by a woody grass invasion along a climate gradient. These results suggest that, under current and future climate, including the changes in decomposer functional groups, particularly macrofauna, and their interaction with litter traits, would provide a mechanistic and more reliable prediction on ecosystem functions altered by invaders than a functional trait-based framework.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available