4.6 Article

Impact of the small-scale structure on the Stochastic Background of Gravitational Waves from cosmic strings

Journal

Publisher

IOP Publishing Ltd
DOI: 10.1088/1475-7516/2020/11/050

Keywords

Cosmic strings; domain walls; monopoles; gravitational waves / sources; gravitational wave detectors

Ask authors/readers for more resources

Numerical simulations and analytical models suggest that infinite cosmic strings produce cosmic string loops of all sizes with a given power-law. Precise estimations of the power-law exponent are still matter of debate while numerical simulations do not incorporate all the radiation and back-reaction effects expected to affect the network at small scales. Previously it has been shown, using a Boltzmann approach, that depending on the steepness of the loop production function and the gravitational back-reaction scale, a so-called Extra Population of Small Loops (EPSL) can be generated in the loop number density. We propose a framework to study the influence of this extra population of small loops on the Stochastic Background of Gravitational Waves (SBGW). We show that this extra population can have a significant signature at frequencies higher than H-0 (Gamma G mu)(-1) where is of order 50 and H-0 is the Hubble constant. We propose a complete classification of the Gravitational Wave (GW) power spectra expected from cosmic strings into four classes, including the model of Blanco-Pillado, Olum and Shlaer and the model of Lorenz, Ringeval and Sakellariadou. Finally we show that given the uncertainties on the Polchinski-Rocha exponents, two hybrid classes of GW power spectrum can be considered giving very different predictions for the SBGW.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available