4.7 Article

Genetics and Genomics of SOST: Functional Analysis of Variants and Genomic Regulation in Osteoblasts

Journal

Publisher

MDPI
DOI: 10.3390/ijms22020489

Keywords

sclerostin; bone; 4C-seq; luciferase reporter assay; HBM

Funding

  1. Spanish MINECO [SAF2014-56562-R, SAF2016-75948-R, PID2019107188RB-C21]
  2. CIBERER [U720]
  3. FI predoctoral fellowship from Generalitat de Catalunya
  4. FPU predoctoral fellowship from the Spanish Ministerio de Educacion Cultura y Deporte

Ask authors/readers for more resources

This study assessed the functionality of two variants of SOST and investigated the physical interactors of the SOST proximal promoter region in bone cells. Results showed that these variants affected the expression of SOST and had physical contacts with far-reaching genomic sequences.
SOST encodes the sclerostin protein, which acts as a key extracellular inhibitor of the canonical Wnt pathway in bone, playing a crucial role in skeletal development and bone homeostasis. The objective of this work was to assess the functionality of two variants previously identified (the rare variant rs570754792 and the missense variant p.Val10Ile) and to investigate the physical interactors of the SOST proximal promoter region in bone cells. Through a promoter luciferase reporter assay we show that the minor allele of rs570754792, a variant located in the extended TATA box motif, displays a significant decrease in promoter activity. Likewise, through western blot studies of extracellular and intracellular sclerostin, we observe a reduced expression of the p.Val10Ile mutant protein. Finally, using a circular chromosome conformation capture assay (4C-seq) in 3 bone cell types (MSC, hFOB, Saos-2), we have detected physical interactions between the SOST proximal promoter and the ECR5 enhancer, several additional enhancers located between EVT4 and MEOX1 and a distant region containing exon 18 of DHX8. In conclusion, SOST presents functional regulatory and missense variants that affect its expression and displays physical contacts with far reaching genomic sequences, which may play a role in its regulation within bone cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available