4.7 Article

A comprehensive exploration of mercury adsorption sites on the carbonaceous surface: A DFT study

Journal

FUEL
Volume 282, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.118781

Keywords

Mercury; Adsorption sites; Defective carbonaceous; Density functional theory; Adsorption mechanism

Funding

  1. Beijing Municipal Natural Science Foundation [2182066]
  2. Natural Science Foundation of Hebei Province of China [B2018502067, E2020502023]
  3. Fundamental Research Funds for the Central Universities [JB2015RCY03, 2017XS121]

Ask authors/readers for more resources

Mercury pollution released from coal-fired power plants has caused worldwide concern for its toxicity, global range transportation, and bioaccumulation. Unburned carbon in fly ash is considered to be a promising adsorbent to effectively remove elemental mercury. However, the active sites of the unburned carbon for Hg-0 adsorption have not been clearly identified, which greatly hinders the development of effective adsorbents. To reveal the adsorption sites of the carbonaceous surface, the adsorption process of Hg-0 on different carbonaceous surfaces was systematically investigated through density functional theory. The Mayer bond order, Electron localization function, and Electron density difference were used to analyze the adsorption mechanism of Hg-0. Meanwhile, the oxygen-containing functional groups were also considered to research the influence on mercury adsorption with the defective surface. The adsorption of Hg-0 on defective carbonaceous surfaces is associated with stable chemisorption, and surface defects can significantly improve the adsorption energy of Hg-0. This theoretical study provides theoretical guidance for the development of mercury removal technology with carbon materials in the coal-fired power plant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Environmental

Microwave-Induced Deep Catalytic Oxidation of NO Using Molecular-Sieve-Supported Oxygen-Vacancy-Enriched Fe-Mn Bimetal Oxides

Bo Yuan, Zhen Qian, Xiaojie Yang, Mengchao Luo, Xiaohe Feng, Le Fu, Weijie Yang, Lijuan Yang, Jinghong Zhang, Yi Zhao, Runlong Hao

Summary: A novel microwave catalytic oxidation method for denitrification was developed, which can effectively convert NO to nitrate/nitrite with minimal NO2 yield. The use of a molecular sieve-supported oxygen-vacancy-enriched catalyst and microwave irradiation results in excellent catalytic activity and resistance.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2022)

Article Chemistry, Physical

Novel Prediction Model of Band Gap in Organic-Inorganic Hybrid Perovskites Based on a Simple Cluster Model Database

Zhengyang Gao, Yang Bai, Min Wang, Guangyang Mao, Xiaoshuo Liu, Peng Gao, Weijie Yang, Xunlei Ding, Jianxi Yao

Summary: This study constructed a cluster model database for organic-inorganic hybrid perovskites and proposed an effective model for predicting the band gap of bulk materials. Several new perovskite materials with suitable band gaps were discovered using this model.

JOURNAL OF PHYSICAL CHEMISTRY C (2022)

Article Engineering, Environmental

Controllable adsorption groups on amine-functionalized carbon nitride for enhanced photocatalytic CO2 reduction

Shihai Cao, Hao Liu, Zhenhe Jia, Meng Guo, Wentong Gao, Zhaohan Ding, Weijie Yang, Liang Chen, Wenjing Wang

Summary: Amine-functionalized carbon nitride prepared by carboxylation and acylation reactions shows enhanced CO2 photoreduction efficiency due to increased CO2 adsorption capacity and reduced charge transfer resistance.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Multidisciplinary

Heterogeneous molecular Co-N-C catalysts for efficient electrochemical H2O2 synthesis

Chang Liu, Zixun Yu, Fangxin She, Jiaxiang Chen, Fangzhou Liu, Jiangtao Qu, Julie M. Cairney, Chongchong Wu, Kailong Liu, Weijie Yang, Huiling Zheng, Yuan Chen, Hao Li, Li Wei

Summary: By constructing heterogeneous molecular catalysts using cobalt porphyrins and carbon nanotubes, the catalytic properties and activity were successfully modulated, resulting in sustainable production of hydrogen peroxide with high selectivity and activity.

ENERGY & ENVIRONMENTAL SCIENCE (2023)

Article Chemistry, Physical

Excellent room temperature catalytic activity for formaldehyde oxidation on a single-atom iron catalyst in a moist atmosphere

Zhijian Liu, Jihao Wei, Guikai Zhang, Dewang Zhang, Jing Zhang, Weijie Yang, Chongchong Wu, Ian D. Gates

Summary: For human safety, efficient removal of formaldehyde in indoor environments is crucial. A metal-organic framework-based single-atom iron catalyst (Fe-SA) is proposed as a potential catalyst for formaldehyde oxidation. Through density functional theory (DFT) calculation, the adsorption characteristic and reaction path of Fe-SA with different coordination environments were explored. Fe-SA with 5-nitrogen coordination (Fe-SA-N-5-C) was selected and tested, showing a formaldehyde removal efficiency of 85.8% at 25 degrees C and 75% relative humidity, surpassing current data. Moisture was found to enhance catalytic oxidation of formaldehyde, indicating the practical applicability and stability of Fe-SA-N-5-C.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Physical

Boosting zinc storage in potassium-birnessite via organic-inorganic electrolyte strategy with slight N-methyl-2-pyrrolidone additive

Wei Lv, Jingwen Meng, Xudong Li, Chao Xu, Weijie Yang, Songzhao Duan, Yiming Li, Xing Ju, Runsong Yuan, Yonglan Tian, Miaomiao Wang, Xuefeng Lyu, Peiyuan Pan, Xiaolei Ma, Yu Cong, Ying Wu

Summary: This study explores the use of an environmentally-friendly and inexpensive birnessite as a potential cathode material for aqueous Znion batteries. A potassium-birnessite cathode is prepared using a convenient one-pot hydrothermal synthesis method, and a desolvation strategy with a low concentration of N-methyl-2-pyrrolidone (NMP) additive is proposed to enhance Zn(2+) energy storage efficiency. The N-6 sample shows improved kinetics and pseudocapacitance characteristics, with coulombic efficiency of approximately 99.9%, specific energy of 425.66 Wh kg(-1), and long cyclic stability of 95.96% after 2000 charge-discharge cycles.

ENERGY STORAGE MATERIALS (2023)

Article Chemistry, Multidisciplinary

Surface states of dual-atom catalysts should be considered for analysis of electrocatalytic activity

Weijie Yang, Zhenhe Jia, Binghui Zhou, Li Wei, Zhengyang Gao, Hao Li

Summary: By analyzing various DACs structures, the authors find that the surface states of DACs generally differ from a pristine surface at electrocatalytic operating conditions. Therefore, it is important to consider the surface state of a DAC before analyzing its catalytic activity.

COMMUNICATIONS CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Electronic State and Microenvironment Modulation of Metal Nanoparticles Stabilized by MOFs for Boosting Electrocatalytic Nitrogen Reduction

Lulu Wen, Kang Sun, Xiaoshuo Liu, Weijie Yang, Luyan Li, Hai-Long Jiang

Summary: In this study, PdCu nanoparticles were encapsulated into a sulfonate functionalized metal-organic framework, UiO-66-SO3H, and their microenvironment was further modified by coating a hydrophobic polydimethylsiloxane (PDMS) layer. The resulting PdCu@UiO-S@PDMS catalyst exhibited high activity towards electrochemical nitrogen reduction reaction (NRR), surpassing other counterparts. Experimental and theoretical results revealed that the protonated and hydrophobic microenvironment provided protons for NRR and suppressed the competitive hydrogen evolution reaction, while the electron-rich PdCu sites favored the formation of the N2H* intermediate and reduced the energy barrier of NRR, contributing to its excellent performance.

ADVANCED MATERIALS (2023)

Article Chemistry, Physical

Precise Regulation of the Coordination Environment of Single Co(II) Sites in a Metal-Organic Framework for Boosting CO2 Photoreduction

Jingxue Wang, Kang Sun, Denan Wang, Xinwei Niu, Zhongyuan Lin, Siyuan Wang, Weijie Yang, Jier Huang, Hai-Long Jiang

Summary: The coordination environment around single Co sites in a UiO-type metal-organic framework is modulated to synthesize UiO-Co-N-x (x = 2, 3, and 4) catalysts for photocatalytic CO2 reduction. It is found that the photocatalytic performance is strongly influenced by the coordinated N atom number, with UiO-Co-N-3 exhibiting the highest activity. Photo-/electrochemical results confirm the fastest charge transfer kinetics between the photosensitizer and UiO-Co-N-3. Theoretical calculations and in situ diffuse reflectance infrared Fourier transform spectra reveal that UiO-Co-N-3 has the lowest energy barriers for the rate-determining step and desorption energy of CO* among all UiO-Co-N-x samples.

ACS CATALYSIS (2023)

Article Energy & Fuels

Coordination engineering for single-atom catalysts in bifunctional oxidation NO and mercury

Weijie Yang, Binghui Zhou, Liugang Chen, Ruiyang Shi, Hao Li, Xiaoshuo Liu, Zhengyang Gao

Summary: In this study, the catalytic activity of single-atom cobalt catalysts for the oxidation of NO and Hg0 was improved by doping different p-block elements to regulate the coordination environment. The adsorption energy of O2 and O was calculated to analyze the catalytic activity performance, and four potentially high-activity catalysts were identified. Microkinetic modeling was used to calculate the turnover frequency (TOF) of these catalysts, and the results showed that adjusting the coordination environment of the active metal center significantly improved the catalytic activity of single-atom catalysts in the oxidation of NO and Hg0.
Article Chemistry, Physical

NO Oxidation Using H2O2 at a Single-Atom Iron Catalyst

Weijie Yang, Liugang Chen, Binghui Zhou, Zhenhe Jia, Xiaoshuo Liu, Yanfeng Liu, Hao Li, Zhengyang Gao

Summary: In this study, the combination of single-atom catalysts and H2O2 as an oxidant is proposed for the catalytic oxidation of nitrogen oxide (NO). The reaction pathways for NO oxidation using H2O2 were determined through theoretical calculations and modeling, with *OOH identified as the most favorable pathway with the highest reaction rate and *HNO3 as the main oxidation product. Compared to conventional oxidants and catalysts, using H2O2 on Fe-N-4-C catalyst lowers the reaction energy barriers and enables the deep oxidation of NO. This research provides valuable insights for the development of materials for NO removal.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Chemistry, Physical

Why Is C-C Coupling in CO2 Reduction Still Difficult on Dual-Atom Electrocatalysts?

Weijie Yang, Zhenhe Jia, Binghui Zhou, Liugang Chen, Xunlei Ding, Long Jiao, Huiling Zheng, Zhengyang Gao, Qiang Wang, Hao Li

Summary: Surface states of typical homonuclear and heteronuclear DACs were probed, and spin-polarized density functional theory calculations were conducted to explore the CO2RR reaction mechanisms. The study reveals the difficulty in C-C coupling on DACs and provides insights into enhancing the selectivity and activity of the CO2RR.

ACS CATALYSIS (2023)

Article Chemistry, Multidisciplinary

Effects of intermetal distance on the electrochemistry-induced surface coverage of M-N-C dual-atom catalysts

Weijie Yang, Zhenhe Jia, Liugang Chen, Binghui Zhou, Di Zhang, Yulan Han, Zhengyang Gao, Hao Li

Summary: The electrocatalytic bridge-site poisoning of dual-atom catalysts (DACs) has recently gained attention. Surface Pourbaix analysis revealed that the electrochemistry-induced surface coverages of DACs changed significantly with the intermetal distance. The intermetal distance was found to have a pronounced effect on the electrochemical potential window and the type of pre-covered adsorbate, providing a means to tune the electrocatalytic function of DACs.

CHEMICAL COMMUNICATIONS (2023)

Article Energy & Fuels

Design strategy of polyamine for CO2 absorption guided by a novel descriptor of hydrogen bond strength

Wenfeng Fu, Kanghai Yu, Hao Song, Kai Zhang, Weijie Yang

Summary: A new descriptor was proposed in this study to accelerate the evaluation of different amine pairings and successfully establish a relationship between hydrogen bond strength and reaction energy barrier, providing theoretical guidance for the design of mixed amines.
Article Chemistry, Physical

Design of single-atom catalysts for NO oxidation using OH radicals

Weijie Yang, Liugang Chen, Zhenhe Jia, Binghui Zhou, Yanfeng Liu, Chongchong Wu, Zhengyang Gao

Summary: This study investigated the reaction pathways of NO oxidation with OH radicals over eight types of single-atom catalysts (SACs) through spin-polarized density functional theory calculations. Fe-N4-C was found to have the highest reaction rate among the SACs studied, indicating its potential for efficient catalytic oxidation of NO at room temperature. The catalytic activity of NO oxidation using OH radicals was found to be higher than that using O2 for the SACs system, as demonstrated by the catalytic reactions plotted on the unified volcano map.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Energy & Fuels

Preparation of surface modified nano-hydrotalcite and its applicaiton as a flow improver for crude oil

Yingna Du, Chen Huang, Wei Jiang, Qiangwei Yan, Yongfei Li, Gang Chen

Summary: In this study, anionic surfactants modified hydrotalcite was used as a flow improver for crude oil under low-temperature conditions. The modified hydrotalcite showed a significant viscosity reduction effect on crude oil. The mechanism of the modified hydrotalcite on viscosity and pour point of crude oil was explored through characterization and analysis of the modified hydrotalcite and oil samples.
Article Energy & Fuels

Effect of incorporated hybrid MIL-53(Al) and MWCNT into PES membrane for CO2/CH4 and CO2/N2 separation

Mohammad Saeid Rostami, Mohammad Mehdi Khodaei

Summary: In this study, a hybrid structure, MIL-53(Al)@MWCNT, was synthesized by combining MIL-53(Al) particles and -COOH functionalized multi-walled carbon nanotube (MWCNT). The hybrid structure was then embedded in a polyethersulfone (PES) polymer matrix to prepare a mixed matrix membrane (MMM) for CO2/CH4 and CO2/N2 separation. The addition of MWCNTs prevented MIL-53(Al) aggregation, improved membrane mechanical properties, and enhanced gas separation efficiency.
Article Energy & Fuels

Phase behaviour and physical properties of dimethyl ether (DME)/flue gas/ water/heavy oil systems under reservoir conditions

Yunlong Li, Desheng Huang, Xiaomeng Dong, Daoyong Yang

Summary: This study develops theoretical and experimental techniques to determine the phase behavior and physical properties of DME/flue gas/water/heavy oil systems. Eight constant composition expansion (CCE) tests are conducted to obtain new experimental data. A thermodynamic model is used to accurately predict saturation pressure and swelling factors, as well as the phase boundaries of N2/heavy oil systems and DME/CO2/heavy oil systems, with high accuracy.
Article Energy & Fuels

Comparison of CO2 absorption in DETA solution and [bmim]-[PF6] using thermodynamic and process modelling

Morteza Afkhamipour, Ebad Seifi, Arash Esmaeili, Mohammad Shamsi, Tohid N. Borhani

Summary: Non-conventional amines are being researched worldwide to overcome the limitations of traditional amines like MEA and MDEA. Adequate process and thermodynamic models are crucial for understanding the applicability and performance of these amines in CO2 absorption, but studies on process modeling for these amines are limited. This study used rate-based modeling and Deshmukh-Mather method to model CO2 absorption by DETA solution in a packed column, validated the model with experimental data, and conducted a sensitivity analysis of mass transfer correlations. The study also compared the CO2 absorption efficiency of DETA solution with an ionic solvent [bmim]-[PF6] and highlighted the importance of finding optimum operational parameters for maximum absorption efficiency.
Article Energy & Fuels

Interfacial tension of smart water and various crude oils

Arastoo Abdi, Mohamad Awarke, M. Reza Malayeri, Masoud Riazi

Summary: The utilization of smart water in EOR operations has gained attention, but more research is needed to understand the complex mechanisms involved. This study investigated the interfacial tension between smart water and crude oil, considering factors such as salt, pH, asphaltene type, and aged smart water. The results revealed that the hydration of ions in smart water plays a key role in its efficacy, with acidic and basic asphaltene acting as intrinsic surfactants. The pH also influenced the interfacial tension, and the aged smart water's interaction with crude oil depended on asphaltene type, salt, and salinity.
Article Energy & Fuels

Co-based metal-organic frameworks confined N-hydroxyphthalimide for enhancing aerobic desulfurization of diesel fuels

Dongao Zhu, Kun Zhu, Lixian Xu, Haiyan Huang, Jing He, Wenshuai Zhu, Huaming Li, Wei Jiang

Summary: In this study, cobalt-based metal-organic frameworks (Co-based MOFs) were used as supports and co-catalysts to confine the NHPI catalyst, solving the leaching issue. The NHPI@Co-MOF with carboxyl groups exhibited stronger acidity and facilitated the generation of active oxygen radicals O2•, resulting in enhanced catalytic activity. This research provides valuable insights into the selection of suitable organic linkers and broadens the research horizon of MOF hybrids in efficient oxidative desulfurization (ODS) applications.
Article Energy & Fuels

Influence of carbon-coated zero-valent iron-based nanoparticle concentration on continuous photosynthetic biogas upgrading

Edwin G. Hoyos, Gloria Amo-Duodu, U. Gulsum Kiral, Laura Vargas-Estrada, Raquel Lebrero, Rail Munoz

Summary: This study investigated the impact of carbon-coated zero-valent nanoparticle concentration on photosynthetic biogas upgrading. The addition of nanoparticles significantly increased microalgae productivity and enhanced nitrogen and phosphorus assimilation. The presence of nanoparticles also improved the quality of biomethane produced.
Article Energy & Fuels

Effect of aqueous phase recycling on iron evolution and environmental assessment during hydrothermal carbonization of dyeing sludge

Yao Xiao, Asma Leghari, Linfeng Liu, Fangchao Yu, Ming Gao, Lu Ding, Yu Yang, Xueli Chen, Xiaoyu Yan, Fuchen Wang

Summary: Iron is added as a flocculant in wastewater treatment and the hydrothermal carbonization (HTC) of sludge produces wastewater containing Fe. This study investigates the effect of aqueous phase (AP) recycling on hydrochar properties, iron evolution and environmental assessment during HTC of sludge. The results show that AP recycling process improves the dewatering performance of hydrochar and facilitates the recovery of Fe from the liquid phase.
Article Energy & Fuels

Investigation on the lower flammability limit and critical inhibition concentration of hydrogen under the influence of inhibitors

He Liang, Tao Wang, Zhenmin Luo, Jianliang Yu, Weizhai Yi, Fangming Cheng, Jingyu Zhao, Xingqing Yan, Jun Deng, Jihao Shi

Summary: This study investigated the influence of inhibitors (carbon dioxide, nitrogen, and heptafluoropropane) on the lower flammability limit of hydrogen and determined the critical inhibitory concentration needed for complete suppression. The impact of inhibitors on explosive characteristics was evaluated, and the inhibitory mechanism was analyzed with chemical kinetics. The results showed that with the increase of inhibitor quantity, the lower flammability limit of hydrogen also increased. The research findings can contribute to the safe utilization of hydrogen energy.
Article Energy & Fuels

Phosphotungstic acid supported on Zr-SBA-15 as an efficient catalyst for one-pot conversion of furfural to ?-valerolactone

Zonghui Liu, Zhongze Zhang, Yali Zhou, Ziling Wang, Mingyang Du, Zhe Wen, Bing Yan, Qingxiang Ma, Na Liu, Bing Xue

Summary: In this study, high-performance solid catalysts based on phosphotungstic acid (HPW) supported on Zr-SBA-15 were synthesized and evaluated for the one-pot conversion of furfural (FUR) to γ-valerolactone (GVL). The catalysts were characterized using various techniques, and the ratio of HPW and Zr was found to significantly affect the selectivity of GVL. The HPW/Zr-SBA-15 (2-4-15) catalyst exhibited the highest GVL yield (83%) under optimized reaction conditions, and it was determined that a balance between Bronsted acid sites (BAS) and Lewis acid sites (LAS) was crucial for achieving higher catalytic performance. The reaction parameters and catalyst stability were also investigated.
Article Energy & Fuels

Experimental study of droplet vaporization for conventional and renewable transportation fuels: Effects of physical properties and chemical composition

Michael Stoehr, Stephan Ruoff, Bastian Rauch, Wolfgang Meier, Patrick Le Clercq

Summary: As part of the global energy transition, an experimental study was conducted to understand the effects of different fuel properties on droplet vaporization for various conventional and alternative fuels. The study utilized a flow channel to measure the evolution of droplet diameters over time and distance. The results revealed the temperature-dependent effects of physical properties, such as boiling point, liquid density, and enthalpy of vaporization, and showed the complex interactions of preferential vaporization and temperature-dependent influences of physical properties for multi-component fuels.
Article Energy & Fuels

An experimental and modeling study on the oxidation of ammonia-methanol mixtures in a jet stirred reactor

Yuan Zhuang, Ruikang Wu, Xinyan Wang, Rui Zhai, Changyong Gao

Summary: Through experimental validation and optimization of the chemical kinetic model, it was found that methanol can accelerate the oxidation reaction of ammonia, and methanol can be rapidly oxidized at high concentration. HO2 was found to generate a significant amount of OH radicals, facilitating the oxidation of methanol and ammonia. Rating: 7.5/10.
Article Energy & Fuels

Improving the biodiesel combustion and emission characteristics in the lean pre-vaporized premixed system using diethyl ether as a fuel additive

Radwan M. EL-Zohairy, Ahmed S. Attia, A. S. Huzayyin, Ahmed I. EL-Seesy

Summary: This paper presents a lab-scale experimental study on the impact of diethyl ether (DEE) as an additive to waste cooking oil biodiesel with Jet A-1 on combustion and emission features of a swirl-stabilized premixed flame. The addition of DEE to biodiesel significantly affects the flame temperature distribution and emissions. The W20D20 blend of DEE, biodiesel, and Jet A-1 shows similar flame temperature distribution to Jet A-1 and significantly reduces UHC, CO, and NOx emissions compared to Jet A-1.
Article Energy & Fuels

Condensation characteristics of ammonia vapor during supersonic separation: A novel approach to ammonia-hydrogen separation

Jiang Bian, Ziyuan Zhao, Yang Liu, Ran Cheng, Xuerui Zang, Xuewen Cao

Summary: This study presents a novel method for ammonia separation using supersonic flow and develops a mathematical model to investigate the condensation phenomenon. The results demonstrate that the L-P nucleation model accurately characterizes the nucleation process of ammonia at low temperatures. Numerical simulations also show that increasing pressure and concentration can enhance ammonia condensation efficiency.
Article Energy & Fuels

Multivariate time series prediction for CO2 concentration and flowrate of flue gas from biomass-fired power plants

Shiyuan Pan, Xiaodan Shi, Beibei Dong, Jan Skvaril, Haoran Zhang, Yongtu Liang, Hailong Li

Summary: Integrating CO2 capture with biomass-fired combined heat and power (bio-CHP) plants is a promising method for achieving negative emissions. This study develops a reliable data-driven model based on the Transformer architecture to predict the flowrate and CO2 concentration of flue gas in real time. The model validation shows high prediction accuracy, and the potential impact of meteorological parameters on model accuracy is assessed. The results demonstrate that the Transformer model outperforms other models and using near-infrared spectral data as input features improves the prediction accuracy.