4.4 Article

CaMKII prevents spontaneous acrosomal exocytosis in sperm through induction of actin polymerization

Journal

DEVELOPMENTAL BIOLOGY
Volume 415, Issue 1, Pages 64-74

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2016.05.008

Keywords

Spermatozoa; Acrosome reaction; Actin; CaMKII; ROS; PLD

Funding

  1. IHEL Foundation

Ask authors/readers for more resources

In order to interact with the egg and undergo acrosomal exocytosis or the acrosome reaction (AR), mammalian spermatozoa must undergo a series of biochemical changes in the female reproductive tract, collectively called capacitation. We showed that F-actin is formed during sperm capacitation and fast depolymerization occurs prior to the AR. We hypothesized that F-actin protects the sperm from undergoing spontaneous-AR (sAR) which decreases fertilization rate. We show that activation of the actin severing protein gelsolin induces a significant increase in sAR. Moreover, inhibition of CaMKII or PLD during sperm capacitation, caused an increase in sAR and inhibition of F-actin formation. Spermine, which leads to PLD activation, was able to reverse the effects of CaMKII inhibition on sAR-increase and F-actin-decrease. Furthermore, the increase in sAR and the decrease in F-actin caused by the inactivation of the PLO-pathway, were reversed by activation of CaMKII using H2O2 or by inhibiting protein phosphatase 1 which enhance the phosphorylation and oxidation states of CaMKII. These results indicate that two distinct pathways lead to F-actin formation in the sperm capacitation process which prevents the occurrence of sAR. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Review Developmental Biology

Exploring the roles of noncoding RNAs in craniofacial abnormalities: A systematic review

Cheng Shi, Pengfei Jiao, Zhiyi Chen, Lan Ma, Siyue Yao

Summary: This review discusses the molecular etiology of congenital craniofacial abnormalities, with a focus on the role and mechanism of noncoding RNAs in regulating craniofacial development. Aberrant expression of noncoding RNAs has been implicated in the pathogenesis of craniofacial abnormalities, providing potential therapeutic targets.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

From soap bubbles to multicellular organisms: Unraveling the role of cell adhesion and physical constraints in tile pattern formation and tissue morphogenesis

Hideru Togashi, Steven Ray Davis, Makoto Sato

Summary: Tile patterns, regulated by cell adhesion molecules, are regular arrangements of cells that play important functional roles in multicellular organisms. The physical constraints and cell adhesion regulate both cell shape and tissue morphogenesis.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

Experimental validation and characterization of putative targets of Escargot and STAT, two master regulators of the intestinal stem cells in Drosophila melanogaster

Armen Khanbabei, Lina Segura, Cynthia Petrossian, Aaron Lemus, Ithan Cano, Courtney Frazier, Armen Halajyan, Donnie Ca, Mariano Loza-Coll

Summary: This article investigates the genetic regulatory mechanisms of Drosophila intestinal stem cells. The study found that most target genes co-regulated by Esg and STAT show a consistent gene expression pattern. However, manipulating these validated targets in vivo rarely replicated the effects of manipulating Esg and STAT, suggesting the presence of complex genetic interactions among the downstream targets of these two master regulator genes.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

Islet architecture in adult mice is actively maintained by Robo2 expression in β cells

Bayley J. Waters, Zoe R. Birman, Matthew R. Wagner, Julia Lemanski, Barak Blum

Summary: Researchers found that conditional deletion of Robo2 in adult mice led to a significant loss of islet architecture without affecting beta cell identity or function, suggesting that Robo2 plays a role in actively maintaining adult islet architecture. Understanding the factors required for islet architecture maintenance is crucial for developing future diabetes therapies.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

Myosin XV is a negative regulator of signaling filopodia during long-range lateral inhibition

Rhiannon Clements, Tyler Smith, Luke Cowart, Jennifer Zhumi, Alan Sherrod, Aidan Cahill, Ginger L. Hunter

Summary: Cell protrusions play a crucial role in regulating cell activities during development. By studying the regulation mechanism in fruit fly sensory bristle patterning, it was found that Myosin XV is essential for the dynamics of signaling filopodia and promotes long-range Notch signaling.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

A robust knock-in approach using a minimal promoter and a minicircle

Margaret Keating, Ryan Hagle, Daniel Osorio-Mendez, Anjelica Rodriguez-Parks, Sarah I. Almutawa, Junsu Kang

Summary: Knock-in reporter (KI) animals are essential for studying gene expression in biomedical research. This study developed a new strategy using minicircle technology and a minimal promoter to enhance knock-in events and establish stable KI transgenic reporter lines. The study also highlighted the importance of selecting the proper KI line due to potential inappropriate influence of genome editing on reporter gene expression.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

Neurog1 and Olig2 integrate patterning and neurogenesis signals in development of zebrafish dopaminergic and glutamatergic dual transmitter neurons

Christian Altbuerger, Meta Rath, Daniel Armbruster, Wolfgang Driever

Summary: This study reveals that Neurog1 and Olig2 transcription factors have differential requirements for the development of dopaminergic neurons, and they integrate local patterning signals and Notch neurogenic selection signaling to specify the progenitor population and initiate neurogenesis and differentiation.

DEVELOPMENTAL BIOLOGY (2024)