4.7 Article

Primary sludge as solid carbon source for biological denitrification: System optimization at micro-level

Journal

ENVIRONMENTAL RESEARCH
Volume 191, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2020.110160

Keywords

Denitrification; Primary sludge; Carbon source; Ammonium and phosphate release; Sludge reduction; Refractory dissolved organics

Funding

  1. Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University

Ask authors/readers for more resources

Commercial carbon source (e.g. methanol) has been frequently used to enhance heterotrophic denitrification for nitrate removal. However, this is not sustainable due to the high cost of chemical purchasing and excessive sludge production. To address these issues, this study reports an integrated denitrification system using primary sludge as solid carbon source. Complete denitrification without any nitrite accumulation achieved at the primary sludge dosage of 6.0 g VSS/g N with the maximum specific nitrate reduction rate of 6.4 mg N/g VSS/h, which was comparable with the reported soluble carbon source. More importantly, as a solid waste in municipal wastewater treatment plants (WWTPs), the primary sludge was simultaneously reduced by 65.3%-85.1%, and this avoids the intensive denitrification biomass generation that generally occurs in using the commercial carbon source. Ammonium, phosphate, and recalcitrant organic matter were released meantime. Interestingly, the concentration of ammonium and phosphate declined during the denitrification process. The refractory dissolved organics mainly composed of aromatic protein and microbial by-products. The detailed cycle study suggests that an appropriate denitrification cycle/duration time would largely lower the effluent organics concentration, which can be achieved by monitoring the pH turning point. This study clearly demonstrates that primary sludge is a promising alternative carbon source for biological denitrification with great economic benefits and environmental sustainability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available