4.8 Article

PTPN21/Pez Is a Novel and Evolutionarily Conserved Key Regulator of Inflammation In Vivo

Journal

CURRENT BIOLOGY
Volume 31, Issue 4, Pages 875-+

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2020.11.014

Keywords

-

Funding

  1. Wellcome Trust Senior Research Fellowship [107940/Z/15/Z, 214244/Z/18/Z]
  2. Wellcome Trust Sir Henry Wellcome Postdoctoral Fellowship [107355/Z/15/Z]
  3. Wellcome Trust Studentship
  4. Wellcome Trust Sir Henry Dale Fellowship [100104/Z/12/Z]
  5. Cancer Research UK Early Detection Award [C38363/A26931]
  6. Wellcome Trust [107940/Z/15/Z, 214244/Z/18/Z, 107355/Z/15/Z] Funding Source: Wellcome Trust

Ask authors/readers for more resources

Drosophila and larval zebrafish provide models for studying inflammation, where hydrogen peroxide activates signaling pathways to facilitate immune cell recruitment to injured tissues. Key proteins such as Src42A, Draper, Lyn, Pez, MEGF10, and PTPN21 play critical roles in this process.
Drosophila provides a powerful model in which to study inflammation in vivo, and previous studies have revealed many of the key signaling events critical for recruitment of immune cells to tissue damage. In the fly, wounding stimulates the rapid production of hydrogen peroxide (H2O2).(1,2) This then acts as an activation signal by triggering a signaling pathway within responding macrophages by directly activating the Src family kinase (SFK) Src42A,(3) which in turn phosphorylates the damage receptor Draper. Activated Draper then guides macrophages to the wound through the detection of an as-yet unidentified chemoattractant.(3-5) Similar H2O2-activated signaling pathways are also critical for leukocyte recruitment following wounding in larval zebrafish,(6-9) where H2O2 activates the SFK Lyn to drive neutrophil chemotaxis. In this study, we combine proteomics, live imaging, and genetics in the fly to identify a novel regulator of inflammation in vivo; the PTP-type phosphatase Pez. Pez is expressed in macrophages and is critical for their efficient migration to wounds. Pez functions within activated macrophages downstream of damage-induced H2O2 and operates, via its band 4.1 ezrin, radixin, and moesin (FERM) domain, together with Src42A and Draper to ensure effective inflammatory cell recruitment to wounds. We showthat this key role is conserved in vertebrates, because crispant'' zebrafish larvae of the Draper ortholog (MEGF10) or the Pez ortholog (PTPN21) exhibit a failure in leukocyte recruitment to wounds. This study demonstrates evolutionary conservation of inflammatory signaling and identifies MEGF10 and PTPN21 as potential therapeutic targets for the treatment of inflammatory disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available