4.7 Article

High velocity impact response of hybridized pseudo-woven carbon fiber composite architectures

Journal

COMPOSITES PART B-ENGINEERING
Volume 203, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2020.108478

Keywords

Automated fiber placement (AFP); Composite laminates; Impact behavior; Digital image correlation (DIC)

Funding

  1. South Carolina Space Grant Consortium (SCSGC)
  2. University of South Carolina's McNAIR Center

Ask authors/readers for more resources

This paper presents the automated fiber placement (AFP) manufacturing and high velocity impact response of hybrid pseudo-woven IM7/8552 carbon/epoxy composite laminates. Three 24 ply laminate configurations are studied where pseudo-woven sub-laminates are combined with traditional layups on the inside and outside, along with a third quasi-isotropic control laminate [45/90/-45/0]3s. Pseudo-woven sub-laminates are manu-factured using a specialized in situ AFP process implementing tow skips. The pseudo-woven architecture is macroscopically heterogeneous with spatially varying fiber orientations both in-plane and through thickness resulting in multiple interfaces and an expanded design space. The impact experiments are performed according to ASTM D8101 in the range of 250-400 ft/s (76.2-121.92 m/s) using a single stage gas gun while utilizing digital image correlation and high-speed video to assess the laminate's response. Experimental results show that the hybridized configurations have a 45% reduction in back face surface damage, 19.5% less back face deflection and an increase of 5.5% in V50 velocity when compared to traditional laminate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available