4.7 Article

Rapid ingestion and egestion of spherical microplastics by bacteria-feeding nematodes

Journal

CHEMOSPHERE
Volume 261, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128162

Keywords

Time series; Bioaccumulation; Body burden; Pumping rate; Caenorhabditis elegans; Pristionchus pacificus

Funding

  1. German Federal Ministry of Education and Research (BMBF) [02WPL1448D]

Ask authors/readers for more resources

Microplastics, anthropogenically released into freshwaters, settle in sediments, where they are directly ingested by benthic organisms. However, to the best of our knowledge, fine-scale studies of microplastic ingestion and egestion by nematodes, one of the most abundant meiofaunal taxa, are lacking. We therefore conducted a time series of the ingestion and egestion by adult Caenorhabditis elegans and Pristionchus pacificus of 0.5- and 1.0-mu m fluorescent polystyrene (PS) beads along with bacteria. The nematodes were exposed to 10(-7) beads ml(-1) in aqueous medium for 5 min-24 h and pumping rates of C. elegans were determined. In the egestion study, PS bead egestion was monitored in nematodes with high microplastic body burdens for 5 min-24 h in microplastic-free medium. Ingested beads were detected already within 5 min and up to 203 +/- 15 PS beads (1.0 mu m; C. elegans) were found after 30 min. Overall, significantly more 1.0-mu m than 0.5-um PS beads were taken up. The distinct feeding behaviors of the two species influenced their PS bead body burdens. Ingested PS beads were almost completely egested within the first 20-40 min in the presence of sufficient food. In C. elegans, 1.0-mu m beads were egested less rapidly than 0.5-mu m PS beads. Given the rapid ingestion and egestion of the beads, our study demonstrates that the actual amount of ingested and egested microplastics by nematodes in the environment may be several times higher than the microplastic body burdens may imply. However, spherical PS beads did not bioconcentrate in nematodes. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available