4.1 Article

Effects of Edaravone on Functional Recovery of a Rat Model with Spinal Cord Injury Through Induced Differentiation of Bone Marrow Mesenchymal Stem Cells into Neuron-Like Cells

Journal

CELLULAR REPROGRAMMING
Volume 23, Issue 1, Pages 47-56

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/cell.2020.0055

Keywords

spinal cord injury; bone marrow mesenchymal stem cells; cell transplantation; edaravone; functional recovery

Funding

  1. National Natural Science Foundation of China [30660189, 81660002]
  2. Science and Technology Special Commissioner System Project in Guizhou Province [SY [2009] 3058]

Ask authors/readers for more resources

The combined transplantation of edaravone and BMSCs can significantly promote functional repair of spinal cord injury (SCI), leading to increased neuronal regeneration and upregulation of neuron-specific markers.
Edaravone can induce differentiation of bone marrow mesenchymal stem cells (BMSCs) into neuron-like cells and replace lost cells by transplanting neuron-like cells to repair spinal cord injury (SCI). In this study, BMSCs were derived from the bone marrow of male Wistar rats (4 weeks old) through density gradient centrifugation (1.073 g/mL), and the cell purity of BMSCs was up to 95%. The combined injection of basic fibroblast growth factor and edaravone was conducted to differentiate BMSCs into neuron-like cells. In this study, 120 male Wistar rats were used to establish the model of semitransverse SCI; on the seventh day, neuron-like cells were labeled by BrdU and then injected into the epicenter of the injury of rats. On the 14th day after cell transplantation, the biotin dextran amine (BDA) fluorescent agent was used to track the repair of nerve damage. At 7, 14, 21, and 30 days after SCI, the Basso, Beattie, and Bresnahan (BBB) locomotor scale method was used to measure the functional recovery of hind limbs in rats. Additionally, hematoxylin and eosin (H&E) staining, Nissl staining, immunohistochemistry, transmission electron microscopy (TEM), Western blotting, and Real-time quantitative reverse transcripion PCR (qRT-PCR) were used to observe the regeneration of nerve cells. In the edaravone+BMSC group, behavioral analysis of locomotor function showed that functional recovery was significantly enhanced after transplantation of the cells, BrdU-positive cells could be observed scattered in the injured area and extended to both the head and tail, and the BDA tracer shows that the edaravone+BMSC group emits more fluorescent signals. Additionally, H&E staining, Nissl staining, and immunohistochemistry revealed that the space of spinal cord tissue was attenuated and the neurons were increased. Western blotting and qRT-PCR showed that the expression levels of neuron-specific enolase (NSE), Nestin, and neurofilament 200 (NF) were increased, while the expression of glial fibrillary acidic protein (GFAP) was decreased. TEM showed that cytoplasmic edema was reduced, mitochondrial vacuoles were attenuated, and nuclear chromatin concentration was declined after transplantation of neuron-like cells. Moreover, with the extension of time of edaravone+BMSC transplantation, the structures of mitochondria and endoplasmic reticulum tended to be normal. In summary, the induced differentiation of BMSC transplantation can significantly promote the functional repair of SCI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available