4.7 Article

Circ_ZFR contributes to the paclitaxel resistance and progression of non-small cell lung cancer by upregulating KPNA4 through sponging miR-195-5p

Journal

CANCER CELL INTERNATIONAL
Volume 21, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12935-020-01702-0

Keywords

NSCLC; PTX; Circ_zfr; miR-195-5p; KPNA4

Categories

Ask authors/readers for more resources

The study found that circ_ZFR levels were elevated in PTX-resistant NSCLC tissues and cells, and knockdown of circ_ZFR played a positive role in overcoming PTX resistance of NSCLC by regulating the miR-195-5p/KPNA4 axis.
BackgroundA growing body of evidence has demonstrated the vital roles of circular RNAs (circRNAs) in cancer progression and drug resistance. We intended to explore the roles and mechanisms of circ_ZFR in the paclitaxel (PTX) resistance and progression of non-small cell lung cancer (NSCLC).MethodsTwo NSCLC cell lines A549 and H460 were used in this study. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was conducted to measure the levels of circ_ZFR, ZFR, miR-195-5p and karyopherin subunit alpha 4 (KPNA4) mRNA. RNase R assay was used to analyze the characteristic of circ_ZFR. MTT assay was carried out to assess PTX resistance and cell proliferation. Flow cytometry analysis was utilized to analyze cell cycle and apoptosis. Transwell assay was used to examine cell migration and invasion. Western blot assay was conducted to measure the protein levels of Ki67, Twist1, E-cadherin and KPNA4. Dual-luciferase reporter assay was adopted to verify the combination between miR-195-5p and circ_ZFR or KPNA4. Murine xenograft model assay was used to investigate the effect of circ_ZFR on PTX resistance of NSCLC in vivo.ResultsCirc_ZFR level was enhanced in PTX-resistant NSCLC tissues and cells. Knockdown of circ_ZFR suppressed PTX resistance, cell cycle process, proliferation, migration and invasion and induced apoptosis in PTX-resistant NSCLC cells. For mechanism analysis, circ_ZFR knockdown markedly downregulated the expression of KPNA4 by sponging miR-195-5p, thereby promoting PTX sensitivity and suppressing cell progression in PTX-resistant NSCLC cells. In addition, circ_ZFR silencing enhanced PTX sensitivity of NSCLC in vivo.ConclusionCirc_ZFR knockdown played a positive role in overcoming PTX resistance of NSCLC via regulating miR-195-5p/KPNA4 axis, which might provide a possible circRNA-targeted therapy for NSCLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available