4.6 Article

Energy efficient ECG classification with spiking neural network

Journal

BIOMEDICAL SIGNAL PROCESSING AND CONTROL
Volume 63, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.bspc.2020.102170

Keywords

ECG classification; Power-saving; CNN; SNN

Funding

  1. Singapore government's Research, Innovation, and Enterprise 2020 plan (Advanced Manufacturing and Engineering domain) [A1687b0033]

Ask authors/readers for more resources

This paper introduces a method for inter-patient ECG classification using CNN and SNN to detect heartbeat abnormalities early for increased chances of early intervention. By utilizing raw heartbeat data and an energy-saving testing approach, more efficient heart disease monitoring is achieved.
Heart disease is one of the top ten threats to global health in 2019 according to the WHO. Continuous monitoring of ECG on wearable devices can detect abnormality in the user's heartbeat early, thereby significantly increasing the chance of early intervention which is known to be the key to saving lives. In this paper, we present a set of inter-patient ECG classification methods that use convolutional (CNNs) and spiking neural networks (SNNs). We focused on inter-patient heartbeat classification, in which the model is trained over several patients and then used to infer that for patients not used in training. Raw heartbeat data is used in this paper because most wearable devices cannot deal with complex data preprocessing. A two-steps convolutional neural network testing method is proposed for saving power. For even greater energy-saving, a spiking neural network is also proposed. The latter is obtained from converting the trained CNN model with a less than one percent accuracy drop. The average power of a two-classes SNN is 0.077 W, or 0.0074x that of previously proposed neural network-based solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available