4.7 Article

Development of a novel Weighted Average Least Squares-based ensemble multi-satellite precipitation dataset and its comprehensive evaluation over Pakistan

Journal

ATMOSPHERIC RESEARCH
Volume 246, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.atmosres.2020.105133

Keywords

Precipitation estimation; Ensemble precipitation dataset; Dynamic Weighted Average Least Square; Regional and seasonal evaluation; Complex topography; Diverse climate; Pakistan

Funding

  1. National Natural Science Foundation of China [51839006, 51779119]

Ask authors/readers for more resources

Ensemble multi-satellite precipitation datasets (ESPDs) are alternative to satellite-based precipitation products (SPs), which tend to reduce the errors, combine advantages of individual SPs, and have higher accuracy for hydrological applications. The current study proposes and evaluates a dynamic WALS-ESPD developed using the Weighted Average Least Square (WALS) algorithm, which has 0.25 degrees spatial and daily temporal resolutions across glacial, humid, arid and hyper-arid regions of Pakistan during 2000-2015. WALS-ESPD is developed using three SPs, Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 3B42V7, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Climate Prediction Center MORPHing technique (CMORPH), and one re-analysis product, Era-Interim. Mean Bias (MB), Mean Absolute Error (MAE), unbiased Root Mean Square Error (ubRMSE), Correlation Coefficient (R), Kling-Gupta efficiency (KGE score), and Theil's U are used to evaluate the performance of WALS-ESPD both spatially and temporally. Moreover, the skill scores of statistical metrics are used to assess the WALS-ESPD performance against two previously developed ESPDs, DBMA-ESPD and DCBAESPD. TMPA dominated all SPs with average weights of 0.317, 0.341, 0.314, and 0.326 across the glacial, humid, arid and hyper-arid regions. TMPA dominated pre-monsoon (30.26%) and monsoon (35.82%) seasons, while PERSIANN-CDR dominated post-monsoon (27.58%) and winter (29.82%) seasons. WALS-ESPD performed relatively poor across the glacial and humid regions, and during monsoon and pre-monsoon seasons. Skill scores of WALS-ESPD against DBMA-ESPD show better performance of WALS-ESPD in all four regions, especially across the glacial region with the maximum MB, MAE, and ubRMSE scores of 27.36%, 28.34%, and 27.67%, respectively. Meanwhile, WALS-ESPD performed better than DCBA-ESPD in the whole glacial region and most part of other regions, while DCBA-ESPD dominated WALS-ESPD at few stations across humid, arid, and hyper-arid (south-east) regions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available