4.7 Article

Performance investigation of a rectangular spiral flow PV/T collector with a novel form-stable composite material

Journal

APPLIED THERMAL ENGINEERING
Volume 182, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2020.116035

Keywords

Rectangular spiral absorber; PCM-biochar composite; Form stability; PV/T; Electrical output; Exergy efficiency

Funding

  1. IIT Guwahati
  2. [CEE/SG/IITG/PK1134/001]

Ask authors/readers for more resources

PV/T is a novel hybrid collector that combines photovoltaic and thermal absorber to address both electrical output drop and heat utilization issues. However, challenges such as cooling uniformity and thermal efficiency still hinder the broader applicability of PV/T.
The electrical output of the Photovoltaic (PV) cells decreases with the increase in the operating temperature. To address the issue of electrical power drop in PV, a new hybrid collector called photovoltaic-thermal (PV/T) module has been proposed by the researchers. PV/T combines a PV and thermal absorber; it helps in cooling of PV and to harness the waste heat from PV for utilizing in low-temperature applications. However, the cooling uniformity and thermal efficiency remain to be major challenges for the broader applicability of PV/T. In this work, a novel rectangular spiral tube only absorber is developed with a transparent multi-crystalline PV module with absorber tubes directly glued to the PV backside. A novel form-stable composite developed by simple impregnation method using PCM (OM35) and biochar derived from water hyacinth. This novel composite is embedded in the enclosure formed by the PV and back cover to improve cooling uniformity and better absorption of incoming radiation due to the blackish appearance of the composite. In the composite, 5% by wt aluminium metal powder is added. The thermal conductivity of the composite is found to improve by 1.66 times than that of pure PCM, while aluminium metal powder is added. The heat of fusion is calculated to be 78 J/g. The developed PV/T system has been experimentally evaluated under outdoor conditions. The average electrical, thermal, energy and exergy efficiency of the PV/T system with novel form-stable thermal energy storage material is reported to be 13 +/- 5.04%, 66.6 +/- 5.48%, 79.6 +/- 5.53%, and 15 +/- 5.58% respectively, whereas the average electrical efficiency PV during the experiment found to be 10.7 +/- 5.04%. The electrical efficiency of the PV module used is 14.64% under Standard Test Conditions. There is an improvement of 18.4% in electrical output as compared to PV with this novel arrangement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available