4.7 Article

A scalable architecture for quantum computation with molecular nanomagnets

Journal

DALTON TRANSACTIONS
Volume 45, Issue 42, Pages 16682-16693

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6dt02664h

Keywords

-

Funding

  1. Spanish Ministry of Economy and Competitivity (MINECO) [FIS2014-55867-P, MAT2014-53432-C5-1-R, MAT2014-53961-R, MAT2015-68204-R, MAT2015-70868-ERC]
  2. European Research Council through grant ERC-stG [258060 FuncMolQIP]
  3. TOP grant of the Technical University of Vienna

Ask authors/readers for more resources

A proposal for a magnetic quantum processor that consists of individual molecular spins coupled to superconducting coplanar resonators and transmission lines is carefully examined. We derive a simple magnetic quantum electrodynamics Hamiltonian to describe the underlying physics. It is shown that these hybrid devices can perform arbitrary operations on each spin qubit and induce tunable interactions between any pair of them. The combination of these two operations ensures that the processor can perform universal quantum computations. The feasibility of this proposal is critically discussed using the results of realistic calculations, based on parameters of existing devices and molecular qubits. These results show that the proposal is feasible, provided that molecules with sufficiently long coherence times can be developed and accurately integrated into specific areas of the device. This architecture has an enormous potential for scaling up quantum computation thanks to the microscopic nature of the individual constituents, the molecules, and the possibility of using their internal spin degrees of freedom.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available