4.3 Article

Bladder underactivity induced by prolonged pudendal afferent activity in cats

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00239.2020

Keywords

bladder; cat; pudendal; stimulation; underactivity

Categories

Funding

  1. National Institute of Diabetes and Digestive and Kidney Diseases [DK-121698, DK-111382]

Ask authors/readers for more resources

The study found that pudendal nerve stimulation had significant effects on bladder activity in cats, leading to underactive bladder. This animal model may be useful for investigating the mechanism of sacral neuromodulation in treating underactive bladder.
The purpose of this study was to determine the effects of pudendal nerve stimulation (PNS) on reflex bladder activity and develop an animal model of underactive bladder (UAB). In six anesthetized cats, a bladder catheter was inserted via the urethra to infuse saline and measure pressure. A cuff electrode was implanted on the pudendal nerve. After determination of the threshold intensity (T) for PNS to induce an anal twitch, PNS (5 Hz, 0.2 ms, 2 T or 4 T) was applied during cystometrograms (CMGs). PNS (4-6 T) of 30-min duration was then applied repeatedly until bladder underactivity was produced. Following stimulation, control CMGs were performed over 1.5-2 h to determine the duration of bladder underactivity. When applied during CMGs, PNS (2 T and 4 T) significantly (P < 0.05) increased bladder capacity while PNS at 4 T also significantly (P < 0.05) reduced bladder contraction amplitude, duration, and area under contraction curve. Repeated application of 30-min PNS for a cumulative period of 3-8 h produced bladder underactivity exhibiting a significantly (P < 0.05) increased bladder capacity (173 +/- 14% of control) and a significantly (P < 0.05) reduced contraction amplitude (50 +/- 7% of control). The bladder underactivity lasted more than 1.5-2 h after termination of the prolonged PNS. These results provide basic science evidence supporting the proposal that abnormal afferent activity from external urethral/anal sphincter could produce central inhibition that underlies nonobstructive urinary retention (NOUR) in Fowler's syndrome. This cat model of UAB may be useful to investigate the mechanism by which sacral neuromodulation reverses NOUR in Fowler's syndrome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available