4.7 Article

Wild Relatives of Wheat Respond Well to Water Deficit Stress: A Comparative Study of Antioxidant Enzyme Activities and Their Encoding Gene Expression

Journal

AGRICULTURE-BASEL
Volume 10, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/agriculture10090415

Keywords

Aegilopsspp; oxidative stress; gene expression; physio-chemical properties; enzyme activity

Categories

Funding

  1. University of Helsinki

Ask authors/readers for more resources

Previous studies have revealed that some wild wheat accessions respond well to water deficit treatments and have a good potential in terms of photosynthetic parameters, root system architecture, and several physiological properties. However, the biochemical responses and molecular mechanisms of antioxidant-encoding genes remain to be elucidated. Herein, we investigated the most tolerant accessions fromA. crassa,Ae. tauschii, andAe. cylindricapreviously identified from a core collection in previous studies, along with a control variety of bread wheat (T. aestivumcv. Sirvan) through measuring the shoot fresh and dry biomasses; the activities of antioxidant enzymes (including ascorbate peroxidase (APX), catalase (CAT), guaiacol peroxidase (GPX), and peroxidase (POD)); and the relative expression ofCAT, superoxide dismutase (MnSOD), andGPXandAPXgenes under control and water deficit conditions. Water deficit stress caused a significant decrease in the shoot biomasses but resulted in an increase in the activity of all antioxidant enzymes and relative expression of antioxidant enzyme-encoding genes. Principal component analysis showed a strong association between the shoot dry biomass and the activity of CAT, POD, and APX, as well asMnSODgene expression. Thus, these traits can be used as biomarkers to screen the tolerant plant material in the early growth stage. Taken together, our findings exposed the fact thatAe. tauschiiandAe. crassarespond better to water deficit stress thanAe. cylindricaand a control variety. Furthermore, these accessions can be subjected to further molecular investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available