4.7 Review

Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers

Journal

BIOMEDICINES
Volume 8, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/biomedicines8100441

Keywords

3D bioprinting; diabetic foot ulcers; wound healing

Funding

  1. Agency for Science, Technology and Research, Singapore, SERC Programmatic Grant [A18A8b0059]
  2. IAF-PP Program [H17/01/a0/004]

Ask authors/readers for more resources

Diabetes mellitus (DM) is a chronic metabolic disease with increasing prevalence worldwide. Diabetic foot ulcers (DFUs) are a serious complication of DM. It is estimated that 15-25% of DM patients develop DFU at least once in their lifetime. The lack of effective wound dressings and targeted therapy for DFUs often results in prolonged hospitalization and amputations. As the incidence of DM is projected to rise, the demand for specialized DFU wound management will continue to increase. Hence, it is of great interest to improve and develop effective DFU-specific wound dressings and therapies. In the last decade, 3D bioprinting technology has made a great contribution to the healthcare sector, with the development of personalized prosthetics, implants, and bioengineered tissues. In this review, we discuss the challenges faced in DFU wound management and how 3D bioprinting technology can be applied to advance current treatment methods, such as biomanufacturing of composite 3D human skin substitutes for skin grafting and the development of DFU-appropriate wound dressings. Future co-development of 3D bioprinting technologies with novel treatment approaches to mitigate DFU-specific pathophysiological challenges will be key to limiting the healthcare burden associated with the increasing prevalence of DM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available