4.6 Article

PAPR Reduction in UFMC for 5G Cellular Systems

Journal

ELECTRONICS
Volume 9, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/electronics9091404

Keywords

universal-filtered multi-carrier (UFMC); peak-to-average power ratio (PAPR); selective mapping (SLM)

Funding

  1. Deanship of Scientific Research at King Saud University [RG-1438-092]

Ask authors/readers for more resources

Universal filtered multi-carrier (UFMC) is a potential multi-carrier system for future cellular networks. UFMC provides low latency, frequency offset robustness, and reduced out-of-band (OOB) emission that results in better spectral efficiency. However, UFMC suffers from the problem of high peak-to-average power ratio (PAPR), which might impact the function of high power amplifiers causing a nonlinear distortion. We propose a comparative probabilistic PAPR reduction technique, called the decomposed selective mapping approach, to alleviate PAPR in UFMC systems. The concept of this proposal depends on decomposing the complex symbol into real and imaginary parts, and then converting each part to a number of different phase vectors prior to the inverse fast Fourier transform (IFFT) operation. The IFFT copy, which introduces the lowest PAPR, is considered for transmission. Results obtained using theoretical analysis and simulations show that the proposed approach can significantly enhance the performance of the UFMC system in terms of PAPR reduction. Besides, it maintains the OOB emission with candidate bit error rate and error vector magnitude performances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available