4.5 Article

Prognostic Implication of a Metabolism-Associated Gene Signature in Lung Adenocarcinoma

Journal

MOLECULAR THERAPY-ONCOLYTICS
Volume 19, Issue -, Pages 265-277

Publisher

CELL PRESS
DOI: 10.1016/j.omto.2020.09.011

Keywords

-

Funding

  1. National Natural Science Foundation of China [81830073]
  2. National and Zhejiang Provincial special support program for high-level personnel recruitment (Ten-thousand Talents Program)

Ask authors/readers for more resources

Lung cancer is the most common cancer worldwide, leading to high mortality each year. Metabolic pathways play a vital role in the initiation and progression of lung cancer. We aimed to establish a prognostic prediction model for lung adenocarcinoma (LUAD) patients based on a metabolism-associated gene (MTG) signature. Differentially expressed (DE)-MTGs were screened from The Cancer Genome Atlas (TCGA) LUAD cohorts. Univariate Cox regression analysis was performed on these DE-MTGs to identify genes significantly correlated with prognosis. Least absolute shrinkage and selection operator (LASSO) regression was performed on the resulting genes to establish an optimal risk model. Survival analysis was used to assess the prognostic ability of the model. The prognostic value of the gene signature was further validated in independent Gene Expression Omnibus (GEO) datasets. A gene signature with 13 metabolic genes was identified as an independent prognostic factor. Kaplan-Meier survival analysis demonstrated the good performance of the risk model in both TCGA training and GEO validation cohorts. Finally, a nomogram incorporating clinical parameters and the metabolic gene signature was constructed to help individualize outcome predictions. The calibration curves showed excellent agreement between the actual and predicted survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available