4.3 Article

Exploring the Intersection between Social Determinants of Health and Unmet Dental Care Needs Using Deep Learning

Publisher

MDPI
DOI: 10.3390/ijerph17197286

Keywords

unmet dental care need; artificial intelligence; deep learning; data science; machine learning; social determinants of health; precision dentistry; oral health outcomes

Funding

  1. Chevron Foundation Research Scholarship

Ask authors/readers for more resources

The goals of this study were to develop a risk prediction model in unmet dental care needs and to explore the intersection between social determinants of health and unmet dental care needs in the United States. Data from the 2016 Medical Expenditure Panel Survey were used for this study. A chi-squared test was used to examine the difference in social determinants of health between those with and without unmet dental needs. Machine learning was used to determine top predictors of unmet dental care needs and to build a risk prediction model to identify those with unmet dental care needs. Age was the most important predictor of unmet dental care needs. Other important predictors included income, family size, educational level, unmet medical needs, and emergency room visit charges. The risk prediction model of unmet dental care needs attained an accuracy of 82.6%, sensitivity of 77.8%, specificity of 87.4%, precision of 82.9%, and area under the curve of 0.918. Social determinants of health have a strong relationship with unmet dental care needs. The application of deep learning in artificial intelligence represents a significant innovation in dentistry and enables a major advancement in our understanding of unmet dental care needs on an individual level that has never been done before. This study presents promising findings and the results are expected to be useful in risk assessment of unmet dental care needs and can guide targeted intervention in the general population of the United States.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available