4.7 Article

Major-Minor Long Short-Term Memory for Word-Level Language Model

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2019.2947563

Keywords

Feature extraction; Semantics; Correlation; Natural language processing; Data models; Task analysis; Training; Language model (LM); long short-term memory (LSTM); natural language processing (NLP); shortcut connections

Funding

  1. National Key Research and Development Program of China [2017YFB1400603]

Ask authors/readers for more resources

Language model (LM) plays an important role in natural language processing (NLP) systems, such as machine translation, speech recognition, learning token embeddings, natural language generation, and text classification. Recently, the multilayer long short-term memory (LSTM) models have been demonstrated to achieve promising performance on word-level language modeling. For each LSTM layer, larger hidden size usually means more diverse semantic features, which enables the LM to perform better. However, we have observed that when a certain LSTM layer reaches a sufficiently large scale, the promotion of overall effect will slow down, as its hidden size increases. In this article, we analyze that an important factor leading to this phenomenon is the high correlation between the newly extended hidden states and the original hidden states, which hinders diverse feature expression of the LSTM. As a result, when the scale is large enough, simply lengthening the LSTM hidden states will cost tremendous extra parameters but has little effect. We propose a simple yet effective improvement on each LSTM layer consisting of a large-scale Major LSTM and a small-scale Minor LSTM to break the high correlation between the two parts of hidden states, which we call Major-Minor LSTMs (MMLSTMs). In experiments, we demonstrate the LM with MMLSTMs surpasses the existing state-of-the-art model on Penn Treebank (PTB) and WikiText-2 (WT2) data sets and outperforms the baseline by 3.3 points in perplexity on WikiText-103 data set without increasing model parameter counts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available