4.7 Article

Direct Versus Indirect Tree Ring Reconstruction of Annual Discharge of Chemora River, Algeria

Journal

FORESTS
Volume 11, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/f11090986

Keywords

reconstruction; river discharge; streamflow; tree rings; water balance; Chemora River; Algeria; Thornthwaite

Categories

Funding

  1. National Science Foundation [0317288, 1103314, 1903535]
  2. Div Atmospheric & Geospace Sciences
  3. Directorate For Geosciences [1903535, 0317288] Funding Source: National Science Foundation

Ask authors/readers for more resources

Annual river discharge is a critical variable for water resources planning and management. Tree rings are widely used to reconstruct annual discharge, but errors can be large when tree growth fails to respond commensurately to hydrologically important seasonal components of climate. This paper contrasts direct and indirect reconstruction as statistical approaches to discharge reconstruction for the Chemora River, in semi-arid northeastern Algeria, and explores indirect reconstruction as a diagnostic tool in reconstruction error analysis. We define direct reconstruction as predictions from regression of annual discharge on tree ring data, and indirect reconstruction as predictions from a four-stage process: (1) regression of precipitation on tree rings, (2) application of the regression model to get reconstructed precipitation for grid cells over the basin, (3) routing of reconstructed precipitation through a climatological water balance (WB) model, and (4) summing model runoff over cells to get the reconstructed discharge at a gage location. For comparative purposes, the potential predictors in both modeling approaches are the same principal components of tree ring width chronologies from a network of drought-sensitive sites ofPinus halepensisandCedrus atlanticain northern Algeria. Results suggest that both modeling approaches can yield statistically significant reconstructions for the Chemora River. Greater accuracy and simplicity of the direct method are countered by conceptual physical advantages of the indirect method. The WB modeling inherent to the indirect method is useful as a diagnostic tool in error analysis of discharge reconstruction, points out the low and declining importance of snowmelt to the river discharge, and gives clues to the cause of severe underestimation of discharge in the outlier high-discharge year 1996. Results show that indirect reconstruction would benefit most in this basin from tree ring resolution of seasonal precipitation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available