4.5 Article

Channel network structure determines genetic connectivity of landward-seawardAvicennia marinapopulations in a tropical bay

Journal

ECOLOGY AND EVOLUTION
Volume 10, Issue 21, Pages 12059-12075

Publisher

WILEY
DOI: 10.1002/ece3.6829

Keywords

Avicennia; gene flow models; genetic structure; mangrove; microsatellites

Funding

  1. Flemish Interuniversity Council for Cooperation and Development (VLIR-UOS)
  2. Flemish Interuniversity Council-University Development Cooperation (VLIR-UOS) through the TEAM project [ZEIN2016PR425]
  3. Vrije Universiteit Brussel [BAS42]

Ask authors/readers for more resources

Mangrove ecosystems along the East African coast are often characterized by a disjunct zonation pattern of seaward and landwardAvicennia marinatrees. This disjunct zonation may be maintained through different positions in the tidal frame, yielding different dispersal settings. The spatial configuration of the landscape and coastal processes such as tides and waves is expected to largely influence the extent of propagule transport and subsequent regeneration. We hypothesized that landward sites would keep a stronger genetic structure over short distances in comparison with enhanced gene flow among regularly flooded seaward fringes. We tested this hypothesis from densely vegetatedA. marinatransects of a well-documented mangrove system (Gazi Bay, Kenya) and estimated local gene flow and kinship-based fine-scale genetic structure. Ten polymorphic microsatellite markers in 457A. marinatrees revealed no overall significant difference in levels of allele or gene diversities between sites that differ in hydrological proximity. Genetic structure and connectivity ofA. marinapopulations however indicated an overall effect of geographic distance and revealed a pronounced distinction between channels and topographic setting. Migration models allowed to infer gene flow directionality among channels, and indicated a bidirectional steppingstone between seaward and nearest located landward stands. Admixed gene pools without any fine-scale structure were found within the wider and more exposed Kidogoweni channel, suggesting open systems. Elevated kinship values and structure over 5 to 20 m distance were only detected in two distant landward and seaward transects near the mouth of the Mkurumuji River, indicating local retention and establishment. Overall, our findings show that patterns ofA. marinaconnectivity are explained by hydrological proximity, channel network structure, and hydrokinetic energy, rather than just their positioning as disjunct landward or seaward zones.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available