4.7 Article

Synthesis of hybrid amorphous/crystalline SnO2 1D nanostructures: investigation of morphology, structure and optical properties

Journal

SCIENTIFIC REPORTS
Volume 10, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41598-020-71383-2

Keywords

-

Funding

  1. National Science Centre, Poland [2016/23/B/ST8/02045]
  2. Silesian University of Technology [10/010/RGJ20/0346, 10/010/RGJ20/0345]

Ask authors/readers for more resources

The aim of the study was to prepare SnO2 nanowires via a combination of electrospinning and the sol-gel method from a polyvinylpyrrolidone (PVP)/dimetylformamide (DMF)/ethanol(EtOH)/tin(IV) chloride pentahydrate (SnCl(4)5H(2)O) solution. The morphology, structure and chemical composition of the obtained PVP/SnO2 nanofibers and SnO2 nanowires were examined using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) as well as a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDX). The optical property analysis was performed on the basis of UV-Vis spectra of absorbance as a function of the wavelength, based on which the rated values of band gaps of the fabricated 1D nanostructures were determined. The morphology analysis showed that the obtained amorphous SnO2 nanowires with crystalline protuberances were characterized by a diameter of 50 to 120 nm. Results demonstrated that nanowires with a ratio of 1:1 precursor to polymer in the spinning solution were characterized by the smallest diameter after calcination and the smallest energy gap of 3.3 eV among all investigated samples. The rest of the studied materials were characterized by a larger energy gap (3.8 and 3.9 eV).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available