4.2 Article

Comparison of detailed reaction mechanisms for homogeneous ammonia combustion

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/zpch-2020-1649

Keywords

ammonia combustion; detailed mechanisms; flow reactor concentration profile measurements; mechanism testing; shock tube ignition delay time measurements

Funding

  1. Hungarian National Research, Development and Innovation Office via NKFIH [K116117, PD120776]

Ask authors/readers for more resources

Ammonia is a potential fuel for the storage of thermal energy. Experimental data were collected for homogeneous ammonia combustion: ignition delay times measured in shock tubes (247 data points in 28 datasets from four publications) and species concentration measurements from flow reactors (194/22/4). The measurements cover wide ranges of temperature T, pressure p, equivalence ratio phi and dilution. The experimental data were encoded in ReSpecTh Kinetics Data Format version 2.2 XML files. The standard deviations of the experimental datasets used were determined based on the experimental errors reported in the publications and also on error estimations obtained using program MinimalSplineFit. Simulations were carried out with eight recently published mechanisms at the conditions of these experiments using the Optima++ framework code, and the FlameMaster and OpenSmoke++ solver packages. The performance of the mechanisms was compared using a sum-of-square error function to quantify the agreement between the simulations and the experimental data. Ignition delay times were well reproduced by five mechanisms, the best ones were Glarborg-2018 and Shrestha-2018. None of the mechanisms were able to reproduce well the profiles of NO, N2O and NH3 concentrations measured in flow reactors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available