4.7 Article

Strong-yet-ductile Ti-Zr alloys through high concentration of oxygen strengthening

Journal

TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
Volume 30, Issue 9, Pages 2449-2458

Publisher

ELSEVIER
DOI: 10.1016/S1003-6326(20)65391-2

Keywords

oxygen; Ti-Zr alloys; ductility; powder metallurgy

Funding

  1. National Natural Science Foundation for Distinguished Young Scholar of China [51625404]

Ask authors/readers for more resources

Ti-Zr alloys (oxygen content 0.42-0.54 wt.%) were prepared via powder metallurgy and hot working. The results indicate that the Ti-Zr alloys exhibit Zr-rich and Zr-lean areas with the same alpha-phase structure, and the Zr-rich area shows a slightly higher oxygen content and a much finer grain size. The Ti-Zr alloys present a good combination of high strength (sigma(s) =700-900 MPa) and total elongation (>20%), and solid solution strengthening of oxygen plays a major role. Zr does not influence much the oxygen-induced brittleness due to its high structural similarity to Ti. Therefore, the high value of 0.54 wt.% is still within the critical oxygen content for the ductile-to-brittle transition of Ti and does not degrade the ductility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Development Studies

An integrated multi-criteria analysis framework of built reservoir with dam-heightening-based decision: China's largest water transfer programs for sustainable development

Bin Liu, Huajian Fang, Xiaosheng Qin, Feilian Zhang, Jingjing Li

Summary: An integrated multi-criteria analysis framework is proposed for sustainable water management of built reservoirs with dam-heightening-based decision. The study shows that this framework can effectively handle the decision-making problem of reservoir construction schemes and identifies subjective weighting factors. Game theory is found to be superior to traditional methods in integrating collective wisdom and objective indicators. This study is of significant reference value for the feasibility demonstration of reservoirs with water transferring tasks worldwide.

SUSTAINABLE DEVELOPMENT (2023)

Article Materials Science, Multidisciplinary

Influence of lowering basal stacking fault energy on twinning behaviours

Bingqiang Wei, Wenqian Wu, Mingyu Gong, Shuwei Yu, Song Ni, Min Song, Jian Wang

Summary: Deformation twinning is crucial in determining the mechanical behavior of hexagonal metals. Lowering the energy of basal stacking faults can promote the formation of basal stacking faults and face centred cubic phase, which affects the propagation and growth of deformation twins. This study provides insights into the influence of lowering basal stacking faults energy on twinning behaviors in hexagonal metals.

ACTA MATERIALIA (2023)

Article Nanoscience & Nanotechnology

Stacking fault formation in perovskite Ti3AlC carbides in a TiAl based alloy during creep at 800°C

Li Wang, Xiaopeng Liang, Bin Liu, Michael Oehring, Jonathan Paul, Jie Liu, Min Song, Florian Pyczak, Yong Liu

Summary: The interaction between dislocations and perovskite Ti3AlC precipitates in a titanium alloy was investigated. It was found that the Ti3AlC carbides can be sheared by dislocations, leading to the formation of stacking faults and crossed stacking fault configurations. These stacking faults are induced by the shear of Shockley partial dislocations and further extended along specific crystal planes.

SCRIPTA MATERIALIA (2023)

Article Chemistry, Physical

Preparation and Microstructure of High-Activity Spherical TaNbTiZr Refractory High-Entropy Alloy Powders

Shenghan Gao, Ao Fu, Zhonghao Xie, Tao Liao, Yuankui Cao, Bin Liu

Summary: High-activity spherical TaNbTiZr refractory high-entropy alloy (REHA) powders were successfully prepared using the methods of electrode induction melting gas atomization (EIGA) and plasma rotating electrode process (PREP). Both methods produced powders with a single-phase body-centered cubic (BCC) structure and low oxygen content. The PREPed powders exhibited higher sphericity and smoother surface, but larger particle size compared to the EIGAed powders.

MATERIALS (2023)

Article Engineering, Chemical

Numerical Simulation on the Optimization of the Anisotropic Thermal Conductivity of Hexagonal Boron Nitride/Nanofiber Composite Films

Shikun Li, Bin Liu, Xiao Jia, Min Xu, Ruoyu Zong, Xunfeng Li, Guohua Liu, Xiulan Huai

Summary: Understanding the relationship between the physical properties of composite components and thermal conductivity is crucial for improving overall heat-dissipation performance. A numerical simulation was conducted to investigate the anisotropic thermal conductivity and heat flux distributions of h-BN/nanofiber composite films. Factors such as the intrinsic thermal conductivity of the matrix and filler, filler geometry and orientation, and interface thermal resistance were considered. The study found that increasing the intrinsic thermal conductivity of the matrix and tuning the interface thermal resistance could enhance the thermal conductivity, while the contributions from increasing filler conductivity and length were limited.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2023)

Article Engineering, Chemical

Green and Low-Cost Approach for Recovering Valuable Metals from Spent Lithium-Ion Batteries

Hui Wang, Longhao Cao, Mengmeng Wang, Bin Liu, Longping Deng, Guohua Li, Ya-Jun Cheng, Jie Gao, Yonggao Xia

Summary: A process to recycle valuable metals from spent lithium-ion batteries (LIBs) by separating aluminum foil and cathode material is proposed. The separated aluminum foil is used as a reducing agent to generate high-purity Ni-Co-Mn nanopowders. The process achieves high recovery efficiencies of Li, Ni, Co, and Mn and transforms waste aluminum into a high-value-added reductant, greatly reducing costs and making the process green.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2023)

Article Chemistry, Physical

Unveiling different oxide scales in a compositionally complex polycrystalline CoNi-base superalloy

Longjun Li, Li Wang, Zhida Liang, Junyang He, Min Song

Summary: The formation of various types of oxide scales on the surface and along the grain boundaries of a complex CoNi-based superalloy was investigated at 900 degrees C. A complex multilayered oxide scale was formed under steady-state conditions (oxidation time up to 24 hours). After the breakdown of the steady-state oxide scale (oxidation for 48 hours), different types of oxide scales occurred. It was also observed that oxidation gradually extended into the specimen interior along the grain boundaries, caused by selective oxidation of elements due to differences in equilibrium oxygen partial pressures. Local microstructure and oxygen concentration were found to significantly influence the formation and configuration of the oxide scales in the investigated alloy.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Letter Materials Science, Multidisciplinary

Enhancing {101 over line 2} twin boundary migration capability in Ti-Al solid solution alloys with increasing Al content

Hao Zhang, Bingqiang Wei, Xiaoqin Ou, Song Ni, Xiaozhou Liao, Min Song

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Physical

Effect of Si on Microstructure and Mechanical Properties of FeCrNi Medium Entropy Alloys

Fang Ding, Yuankui Cao, Ao Fu, Jian Wang, Weidong Zhang, Jingwen Qiu, Bin Liu

Summary: The microstructural evolution and mechanical behavior of FeCrNi medium entropy alloy (MEA) with different Si content were investigated in this study. It was found that the precipitation of fine s particles can be formed in situ by thermomechanical treatment of Si doping FeCrNi MEAs. FeCrNiSi0.15 MEA exhibits a good combination of strength and ductility, with yield strength and tensile elongation of 1050 MPa and 7.84%, respectively. The strength enhancement is mainly attributed to the grain-boundary strengthening and precipitation strengthening caused by fine s particles.

MATERIALS (2023)

Article Materials Science, Multidisciplinary

Positioning of interstitial carbon atoms in the deformed Fe-C system

Yang Yang, Xiaoqin Ou, Hao Zhang, Min Song

Summary: Carbon plays a crucial role in enhancing the mechanical properties of steels as a principal alloying element. This study investigates the interstitial sites for carbon atoms during deformation-induced phase transformations in Fe-C alloys through molecular dynamics simulations, providing insights into the microstructural evolution at the atomic scale. The distribution and arrangement of carbon atoms in the Fe lattice affect the formation of stacking faults and the pinning effects on dislocation movement.

MATERIALS TODAY COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

Dynamic recrystallization behavior and mechanism of bimodal TC17 titanium alloy during high strain rate hot compression

Yangbo Yu, Hongge Yan, Huaming Zhu, Jihua Chen, Weijun Xia, Youping Sun, Bin Su, Yifu Deng, Min Song

Summary: This study investigates the DRX behavior, grain structure, and texture evolution of bimodal TC17 alloy during high strain rate hot compression at 840°C and 900°C. The results show that the lamellar alpha s has almost no impact on the DRX of the beta phase due to dynamic transformation. The formation of dense LAGB cells in the beta phase is influenced by the decomposition of alpha p and the strain level.

MATERIALS TODAY COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

The hardening and softening mechanism governed by GB stability in nanograined metals: A molecular dynamics study

Jingli Liu, Han Li, Bin Liu, Luling Wang, Jianqiu Zhou, Feng Zhang

Summary: The effect of grain boundary stability on the properties of Cu-Ni nanocrystalline alloy was investigated by molecular dynamics simulations. It was found that a more stable grain boundary leads to a higher energy barrier for deformation mechanisms and requires more force to hinder atomic slip in the grain boundary. The material reaches its highest strength when the homogeneous segregation degree of nanograined metals is about 0.9. Additionally, the binding energy between dislocations and grain boundaries was studied comprehensively and deeply for the first time using molecular dynamics simulation.

MATERIALS TODAY COMMUNICATIONS (2023)

Article Chemistry, Physical

Cryogenic mechanical behavior of a FeCrNi medium-entropy alloy fabricated by selected laser melting

Zhonghao Xie, Ao Fu, Heng Duan, Bingfeng Wang, Xiaofeng Li, Yuankui Cao, Bin Liu

Summary: A single-phase FeCrNi medium-entropy alloy with a face-centered cubic structure was successfully fabricated by selected laser melting. The alloy exhibits hierarchical microstructures and shows an excellent strength-ductility combination. At 77 K, the alloy achieves ultra-high yield strength and ultimate tensile strength, while still maintaining a high fracture elongation. Moreover, the alloy deformed at 77 K produces more nanotwins, enhancing its twinning-induced plasticity effects and contributing to its high plasticity.

INTERMETALLICS (2023)

Article Materials Science, Multidisciplinary

Evolutions of the microstructures and mechanical properties of TC18 titanium alloy processed by hot- rolling in b single-phase region

Changchang Liu, Ji Gu, Min Song

Summary: This study investigates the hot rolling treatment and water quenching process on a TC18 titanium alloy, revealing the formation of a new phase induced by stress and assisted by another phase. The existence of a new phase and diffuse streaks during hot working were also observed. The research confirms the presence of dynamic recrystallization (DRX), with recrystallization grains nucleating preferentially at high-energy areas such as grain boundaries and shear bands. The elongation decreases and tensile strength increases with increasing deformation.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Materials Science, Multidisciplinary

Effect of high strain rate hot compression on the microstructure evolution and subsequent α precipitation of TC17 alloy during single-step and duplex aging

Yangbo Yu, Hongge Yan, Huaming Zhu, Jihua Chen, Weijun Xia, Chang Xu, Min Song

Summary: Modified alpha precipitation based on severely deformed beta phase and optimized aging treatments is crucial for strengthening titanium alloys. This study investigated the beta phase features of high strain rate hot compressed TC17 alloy and the precipitation behavior of alpha phase during single-step and duplex aging. The results showed that high strain rate hot compression significantly promoted the nucleation and growth of alpha phase, and duplex aging was more beneficial for refining alpha precipitates.

MATERIALS TODAY COMMUNICATIONS (2023)

No Data Available