4.7 Article

In-field characterization of key performance parameters for bifacial photovoltaic installation in a desert climate

Journal

RENEWABLE ENERGY
Volume 159, Issue -, Pages 50-63

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2020.05.174

Keywords

Bifacial photovoltaics; Desert; Experiments; Levelized cost of electricity; Module temperature

Ask authors/readers for more resources

To address the main challenges inhibiting the adoption of bifacial PV technology in hot desert environment, continuous performance monitoring and comprehensive analyses are timely required. Therefore, for strengthening its bankability, this techno-economic study presents an in-field bifacial parametric analysis for the environment of Middle-East. Impacts of ground coverage ratio (GCR), stand-alone/in-array mounted losses, albedo, module temperature, mounting height, tilt, and azimuth angle were quantified. To highlight the bifacial potential, economic analysis as a function of energy gain and investment premium was carried out for demarcating profitable operating zones. Moreover, multivariable analysis for rear irradiance was performed using ground coverage ratio, height, albedo and array size, specifically:1 x 1 (free-standing module), 3 x 3 and 5 x 5. It was found that for systems where the land costs are significant, high GCR coupled with increased mounting height would result in a better energy yield per area. Module with a bifacial gain of 8.6% was found to be profitable provided that the bifacial premium investment doesn't exceed 10% of monofacial. Thermally, bifacial power gain was found to determine the cell temperature under different irradiation conditions. The study reveals vital insights that will allow engineers and researchers to optimize bifacial PV performance in hot and sunny desert climates. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available