4.7 Article

In vitro degradation and biocompatibility evaluation of fully biobased thermoplastic elastomers consisting of poly(beta-myrcene) and poly(L-lactide) as stent coating

Journal

POLYMER DEGRADATION AND STABILITY
Volume 179, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2020.109254

Keywords

Drug eluting stent; Coating; Poly(beta-myrcene)-poly(L-lactide); Thermoplastic elastomers

Funding

  1. National Key R&D Program of China [2018YFC1105500 (2018YFC1105503)]
  2. Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science [20180510037]
  3. Fundamental Research Funds for the Central Universities [DUT19LAB27]

Ask authors/readers for more resources

Currently coronary stent coating materials focus on biodegradable polymers requiring excellent performances, including biodegradability, cytocompatibility and hemocompatibility as well as ductility. To endow poly(L-lactide) (PLLA) with good ductility as stent coating, two kinds of high branched PLLA grafted copolymers with introduction of biobased poly(beta-myrcene) rubber segments were developed towards sent coating. The impacts of topological architectures (including linear comb and star comb) on physical properties, hydrolytic and enzymatic degradation behaviors, cytocompatibility, hemocompatibility and coating morphology were investigated. It was found that the nonbiodegradable poly(beta-myrcene) rubber segments delayed the degradation rate, and further decreased with more complex architectures. Proteinase K accelerated enzymatic degradation compared with hydrolytic degradation. Biocompatibility testing showed that the fully biobased thermoplastic elastomers possessed good cytocompatibility and hemocompatibility. Morphological characterization of stent coatings indicated that the linear comb and star comb PLLA grafted copolymers improved the surface smooth of pure PLLA coating. Thus, these highly branched fully biobased thermoplastic elastomers are promising to as potential coating materials in drug eluting stent. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Polymer Science

Development of an automatic evaluation system for photooxidation and assessment of polyethylenes containing HALS and UVA

Tetsu Sato, Mariko Takahashi, Takeshi Saito, Masahito Toyonaga, Itsuo Tanuma, Rie Yamada, Satoru Hosoda

Summary: An automatic evaluation system for photooxidation has been developed and successfully applied to assess the photo-OIT of LDPE samples containing photooxidation stabilizers. The system allows independent setting of various measurement conditions and provides detailed information on the photooxidation process.

POLYMER DEGRADATION AND STABILITY (2024)

Article Polymer Science

Fluoroalkyl trimethoxysilane route to hydrophobic 2K polyurethane clearcoats and their failure mechanism

Zongzheng Zuo, Shuxue Zhou

Summary: In this study, three fluoroalkyl trimethoxysilane (FATMS) additives with different chain lengths were incorporated into a two-component polyurethane clearcoat to improve its hydrophobic durability. The coatings modified with FATMS maintained their surface hydrophobicity under various conditions, but quickly lost it when exposed to both UV irradiation and/or high temperature with water. The results suggest that the FATMS route is more suitable for indoor applications at room temperature.

POLYMER DEGRADATION AND STABILITY (2024)

Article Polymer Science

A green flame retardant coating based on one-step aqueous complexation of phytic acid and urea for fabrication of lightweight and high toughness flame retardant EPS insulation board

Song Li, Feng Zhao, Xueya Wang, Zhihua Liu, Jingze Guo, Yutong Li, Shuangmei Tan, Zhenxiang Xin, Shuai Zhao, Lin Li

Summary: Green flame retardants have garnered attention for their environmental friendliness, but current options fall short in achieving high flame retardancy for flammable polymers and maintaining environmental protection. This study takes a two-pronged approach to address flame retardants and the flame-retardant process. An eco-friendly bio-based synergistic flame retardant (PAU), synthesized using phytic acid (PA) and urea (U), is used to create a flame retardant coating that can be directly applied to any surface shape using polydopamine as an adhesive. The resulting EPS-PAU exhibits excellent flame retardancy, smoke suppression, and light weight while only slightly increasing the density.

POLYMER DEGRADATION AND STABILITY (2024)