4.5 Article

Band structure and enhanced photocatalytic degradation performance of Mg-doped CdS nanorods

Journal

PHYSICA B-CONDENSED MATTER
Volume 594, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.physb.2020.412363

Keywords

CdS nanorods; Mg-doped CdS; Band structure; Photocatalytic RhB degradation

Funding

  1. National Natural Science Foundation of China [41676069, 41976036, 41906034]
  2. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), China [KF190408]
  3. Key Research and Development Program of Shandong Province [2019GHY112066, 2019GHY112085]

Ask authors/readers for more resources

In this paper, Mg-doped CdS nanorods (MgCdS) were prepared by a simple solvothermal method to investigate the band structure and enhanced photocatalytic degradation performance under visible light illumination. Mg element is successfully doped into the lattice of CdS and it doesn't destroy the nanorod structure of CdS. The band gap of CdS is widened by Mg doping. The prepared MgCdS shows improved photocatalytic degradation performance than CdS, and 5% MgCdS has the optimal photocatalytic degradation performance, which can degrade approximately 96% RhB in 70-min visible light illumination. The enhanced photocatalytic degradation performance of 5% MgCdS is due to the increased photogenerated charge carrier concentration and the effectively suppressed recombination of photogenerated carriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Enhanced photocatalytic performance of the MoS2/g-C3N4 heterojunction composite prepared by vacuum freeze drying method

Jing Tian, Zhuoyuan Chen, Jiangping Jing, Chang Feng, Mengmeng Sun, Weibing Li

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2020)

Article Chemistry, Physical

An ultrafine hyperbranched CdS/TiO2 nanolawn photoanode with highly efficient photoelectrochemical performance

Xuhong Jiang, Mengmeng Sun, Zhuoyuan Chen, Jiangping Jing, Chang Feng

JOURNAL OF ALLOYS AND COMPOUNDS (2020)

Article Materials Science, Multidisciplinary

A novel TiO2 nanotube arrays/MgTixOy multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection

Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Guiying Lu, Jing Tian, Jian Hou

CORROSION SCIENCE (2020)

Article Materials Science, Multidisciplinary

Enhanced photocatalytic activity of BiOCl with regulated morphology and band structure through controlling the adding amount of HCl

Jing Tian, Zhuoyuan Chen, Jiangping Jing, Chang Feng, Mengmeng Sun, Weibing Li

MATERIALS LETTERS (2020)

Article Chemistry, Analytical

Synthesis of a novel three-dimensional sponge-like microporous CdS film with high photoelectrochemical performance and stability

Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Jing Han, Weibing Li, Li Ma

JOURNAL OF ELECTROANALYTICAL CHEMISTRY (2020)

Article Chemistry, Physical

Transforming g-C3N4 from amphoteric to n-type semiconductor: The important role of pin type on photoelectrochemical cathodic protection

Jiangping Jing, Zhuoyuan Chen, Chang Feng, Mengmeng Sun, Jian Hou

Summary: Graphitic carbon nitride (g-C3N4) is modified into n-type semiconductor (n-C3N4) using K&I co-doping technique, which can provide photoelectrochemical cathodic protection for 316L stainless steel in NaCl solution.

JOURNAL OF ALLOYS AND COMPOUNDS (2021)

Article Chemistry, Analytical

Using the photoinduced volt-ampere curves to study the p/n types of the corrosion products with semiconducting properties

Jiangping Jing, Zhuoyuan Chen, Chang Feng

Summary: This article addresses the lack of suitable methods to determine the semiconductor types of non-uniformly distributed corrosion products. It demonstrates that the photoinduced volt-ampere curve can accurately measure the p/n type of corrosion products and quantify the photoelectrochemical effects, aiding in the study of the influence of light on corrosion mechanisms and photoelectrochemical cathodic protection.

JOURNAL OF ELECTROANALYTICAL CHEMISTRY (2021)

Article Chemistry, Physical

Synergistic effect of hierarchical structure and Z-scheme heterojunction constructed by CdS nanoparticles and nanoflower-structured Co9S8 with significantly enhanced photocatalytic hydrogen production performance

Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Han, Ke Fang, Weibing Li

Summary: In this study, a CdS/Co9S8 Z-scheme heterojunction system was prepared to enhance the photocatalytic hydrogen production performance. The synergistic effect between hierarchical structure and Z-scheme heterojunction facilitates the quick and efficient transfer of photogenerated charge carriers, accelerating the hydrogen production process. The photocatalytic hydrogen production rate of the CdS/Co9S8 Z-scheme heterojunction system is significantly higher compared to CdS and Co9S8 alone.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2021)

Article Materials Science, Multidisciplinary

Fabrication of two-phase WO3 nanorod photoelectrode and its enhanced photoinduced cathodic protection performance

Jing Tian, Zhuoyuan Chen, Chang Feng, Li Ma, Jiangping Jing, Sijia Liu, Yu Zou

Summary: In this study, two-phase WO3 photoelectrodes with different morphologies were obtained by controlling the concentration of Na2WO4 in the precursor solution, and their performance in photoinduced cathodic protection (CP) was explored. The heterojunctions formed between hexagonal and monoclinic WO3 contribute to the directional separation of photogenerated carriers. Additionally, the ordered growth of WO3 nanorods perpendicular to Ti substrate facilitates the directional transmission of photogenerated carriers, resulting in good photoinduced CP performance.

MATERIALS LETTERS (2021)

Article Chemistry, Physical

Boosted photoinduced cathodic protection performance of ZnIn2S4/TiO2 nanoflowerbush with efficient photoelectric conversion in NaCl solution

Xuhong Jiang, Mengmeng Sun, Zhuoyuan Chen, Jiangping Jing, Guiying Lu, Chang Feng

Summary: A green and environmentally friendly three-dimensional ZnIn2S4/TiO2 nanoflowerbush photoelectrode was constructed, showing excellent photoinduced cathodic protection performance for metallic materials and great potential for applications.

JOURNAL OF ALLOYS AND COMPOUNDS (2021)

Article Materials Science, Multidisciplinary

Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators

Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Guiying Lu, Li Ma, Xiangbo Li, Jian Hou

Summary: This study prepared a g-C3N4/CNTs/CdZnS Z-scheme photocatalyst using carbon nanotubes as electron mediators, which showed significantly enhanced photocatalytic hydrogen production performance and excellent stability.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2021)

Article Materials Science, Multidisciplinary

Fabrication of three-dimensional WO3/ZnWO4/ZnO multiphase heterojunction system with electron storage capability for significantly enhanced photoinduced cathodic protection performance

Chang Feng, Zhuoyuan Chen, Jing Tian, Jiangping Jing, Li Ma, Jian Hou

Summary: A novel three-dimensional hierarchical WO3 photoelectrode was prepared by solvothermal method, and a WO3/ZnWO4/ZnO multiphase heterojunction photoelectrode was obtained through annealing treatment, showing significantly improved photoinduced cathodic protection and electron storage capacity in a 3.5% NaCl solution without the need for a hole scavenger. The electron storage capacity of the heterojunction enables long-term and effective photoinduced cathodic protection of metallic materials even in the dark.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2021)

Article Materials Science, Multidisciplinary

Fabrication of a novel double Z-scheme WO3/Cd0.97Zn0.03S/CoSx photocatalyst for facilitating photocatalytic hydrogen production

Yongxun Dai, Wenrong Liu, Xinyang Fu, Ning Wang, Qiuhui Bu, Xinyi Wang, Chang Feng, Zhuoyuan Chen, Weibing Li

Summary: A novel double Z-scheme WO3/Cd0.97Zn0.03S/CoSx photocatalyst was designed and showed excellent photocatalytic hydrogen production performance. The established double Z-scheme system inhibited the recombination of photogenerated electrons and holes, promoting the transfer of photogenerated carriers and accelerating the photocatalytic hydrogen production process.

MATERIALS LETTERS (2023)

Article Materials Science, Multidisciplinary

The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods

Chang Feng, Zhuoyuan Chen, Jiangping Jing, Jian Hou

JOURNAL OF MATERIALS CHEMISTRY C (2020)

Article Physics, Condensed Matter

Electronic and optical properties of CdSe/ZnSe core/shell QDs within centered hydrogenic impurity and their tunability when subjected to an external electric field

A. Jbeli, N. Zeiri, N. Yahyaoui, P. Baser, M. Said

Summary: The electronic and optical properties of CdSe/ZnSe semiconductor core/shell quantum dots with hydrogenic donor impurity were investigated theoretically. The perturbation and variational methods were used to calculate the binding energy, photoionization cross-section, polarizability, and diamagnetic susceptibility of the excited impurity under various conditions. A significant stark shift in the binding energy was observed under the influence of an external electric field.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

A computational study of alkali (Na, K, Cs) doped methylammonium lead iodide perovskite

Rahat Batool, Tariq Mahmood, Sajid Mahmood, Abdul Aziz Bhatti

Summary: This study investigates the effects of alkali metal doping (Na, K, Cs) on MAPbI3 through compositional engineering. The results show that doping Na, K, and Cs can improve the phase stability, thermodynamic stability, and optical absorption of MAPbI3.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

Influence of Hubbard U correction on the structural, electronic and optical properties of Kesterite Cu2XSnS4 (X= Zn, Fe)

N. A. N. M. Nor, M. A. H. Razali, W. H. A. W. K. Annuar, N. N. Alam, F. N. Sazman, N. H. M. Zaki, A. S. Kamisan, A. I. Kamisan, M. H. Samat, A. M. M. Ali, O. H. Hassan, B. U. Haq, M. Z. A. Yahya, M. F. M. Taib

Summary: This study investigates the potential of quaternary chalcogenides semiconductors as thin film solar cell absorbers using density functional theory (DFT) and density functional theory plus Hubbard U (DFT + U) approach. The results show that by applying Hubbard U terms, the electronic band gaps can be accurately predicted, providing valuable insights for finding cost-effective new thin film solar cell materials.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

A modified drop-casting technique for efficient lead-free, environment-friendly thin film CsBi3I10 perovskite solar cells

Ashwani Kumar, Anuj Kumar, Mohaseen S. Tamboli, Mohd Ubaidullah, J. Jayarubi, S. K. Tripathi

Summary: In this study, lead-based perovskite solar cells are replaced by bismuth-based perovskite cells to overcome their instability and toxicity. CsBi3I10 perovskite films are fabricated using a modified drop-casting process, and the effects of post-annealing temperature on the morphological, structural, and optical properties are investigated. The photovoltaic performance of the cells without a hole transport layer is also quantitatively evaluated.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

Phase stability, elastic properties, and hardness of Ti1-xAlxN from first-principles calculations

Yang Gao, Shu-Ming Chen, Shuo Cao, Shang-Zhou Zhang, Philippe Djemia, Qing-Miao Hu

Summary: This study investigates the phase stability, elastic modulus, and hardness of ternary nitride Ti1-xAlxN. It is found that the hardness increases with the Al content x. The cubic B1 structure is more stable for x < about 0.75, while the hexagonal structure (B4) is more stable for x > about 0.75. The composition dependent hardness and phase decomposition contribute to the convex shaped hardness curve of Ti1-xAlxN.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

Piezoelectric response enhancement of w-AlN by Hf (or Zr) and Sc co-alloying: A first principles study

Fengqi Wang, Qinyan Ye, Xulin He, Kun Luo, Xiaolong Ran, Xingping Zheng, Cheng Liao, Ru Li

Summary: This report uses rigorous calculations based on density functional theory to study the piezoelectric and elastic properties of wurtzite aluminum nitride (w-AlN) with single- and co-alloying by Hf (or Zr) and Sc. The research finds that the (HfSc)0.375Al0.625N and (ZrSc)0.375Al0.625N with stable wurtzite phase have a large piezoelectric coefficient d33 of 49.18 pC/N and 47.00 pC/N, respectively. However, the piezoelectric voltage constant g33 and electromechanical coupling constant k233 of HfAlN, ZrAlN, HfScAlN, and ZrScAlN are smaller than that of ScAlN, which is attributed to the large dielectric constant epsilon 33 of Hf (or Zr) alloying samples. Furthermore, the calculations of internal parameter u and bond angle alpha elucidate the brittle-to-ductile transformation in alloying w-AlN crystal structure. Electronic structure calculations show that the bandgap decreases almost linearly with the increase of alloying concentration, and the Hf (or Zr) alloying compounds become n-type semiconductors due to the existing high-charge states.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

Ho6FeSb2: Potential magnetic refrigerant with improved magnetocaloric effect

S. R. Athul, K. Arun, S. Swathi, U. D. Remya, Andrea Dzubinska, Marian Reiffers, Nagalakshmi Ramamoorthi

Summary: The magnetic and magnetocaloric characteristics of Ho6FeSb2 have been studied. The compound exhibits two second-order ferromagnetic transitions, enabling hysteresis-free magnetocaloric effect across a wide temperature range. The alloy has high relative cooling power and magnetoresistance, making it suitable for hysteresis-free magnetocaloric applications.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

Structural, dielectric and magnetic study of double perovskite La2CoMnO6

Reena Sharma, Neelam Hooda, Ashima Hooda, Satish Khasa

Summary: A polycrystalline double perovskite La2CoMnO6 sample was prepared and its structural, dielectric and magnetic properties were investigated. The sample exhibited complex structures and magnetic behavior, and showed good conductivity and dielectric performance. Its multi-domain magnetic structure suggests its suitability for memory device applications.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

DFT study of RhTiP half Heusler semiconductor: Revealing its mechanical, optoelectronic, and thermoelectric properties

Shubha Dubey, Jisha A. Abraham, Kumud Dubey, Vineet Sahu, Anchit Modi, G. Pagare, N. K. Gaur

Summary: This study investigates the optoelectronic, thermodynamic, thermoelectric, and mechanical stability properties of RhTiP Half Heusler semiconductors. The results show that RhTiP is a non-magnetic material with confirmed mechanical stability. It is found to be an indirect-bandgap semiconductor with a good Seebeck coefficient. This study suggests that RhTiP has promising applications in the thermoelectric and optoelectronic fields.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

Designing vibrant and bright transmission colors with multilayer film structures

Xun Xie, Jiong-Ju Hao, Hong-Wei Yang

Summary: This work presents a multilayer film structure that uses optical resonance to prepare highly efficient and saturated red, green, and blue transmittance colors. Numerical simulations and analysis show that the structure can produce R, G, and B colors with a purity comparable to standard RGB colors, while maintaining efficient transmission efficiency and obtaining a rich variety of structural colors. Additionally, a metallic interlayer is introduced to selectively suppress resonances in the short-wavelength region, improving the purity of the red color. The study also investigates the effect of the incidence angle on color purity and transmission efficiency.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

Prediction of binary mutual solubility via liquid-liquid interfacial tension

Yueqiang Zhao

Summary: Solubility property is of great interest in chemical, physical, pharmaceutical, material, and environmental sciences. Understanding the intrinsic reason behind solubility behavior is a fascinating task. The theoretical relation between binary mutual solubility and liquid-liquid interfacial tension has been derived, where the partitioning of solute molecules between two coexisting liquid phases is determined by the transfer free energy per unit segment for a chain-like solute molecule expressed in terms of solute-solvent interfacial tension. This general theory of solubility is in good agreement with experimental results for binary mutual solubility and molar transfer free energy of solute molecules.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

Producing ZnO films that exhibited near-infrared (NIR) luminescence with a templated design procedure

Osama K. M. Bashiar, R. E. Kroon, H. C. Swart, R. A. Harris

Summary: ZnO thin films with near-infrared emission were successfully fabricated using pulsed laser deposition under vacuum conditions, without the need for additional gases or implantation methods. The NIR emission was hypothesized to be caused by defects in the ZnO film due to high energy particle impacts on the sample surface.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

Influence of dielectric matrix stoichiometry on electrical and magnetoresistive properties of Fe-Zr-O nanocomposites

O. Stognei, A. Berezutskii, I. Anisimov, A. Deryabin

Summary: The influence of ZrOn matrix stoichiometry on the electrical and magnetoresistive properties of Fe-Zr-O nanocomposites has been studied. It was found that the magnetoresistive effect is not observed in composites with oxygen lack, while composites with oxygen excess show magnetoresistive effect and increased resistivity. Magnetoresistivity in composites with oxygen lack only appears after heat treatment. These results can be explained by the difference in the density of localized states in the oxide matrix of the composites and the ratio between two types of conductivity.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

A study about the relationships between surface structures and electrical impedance characteristics in single-walled carbon nanotube/ polyester composites

Mehmet Bayirli, Aykut Ilgaz, Orhan Zeybek

Summary: The present study aims to understand the relationship between impedance characteristics and fractal behaviors. By producing neat and carbon nanotube doped composite specimens, the researchers investigated the electrical properties and surface heteromorphology using Nyquist plots and fractal analysis.

PHYSICA B-CONDENSED MATTER (2024)

Article Physics, Condensed Matter

Enhancing perovskite solar cells: Tailoring the properties of Ti-doped MAPbBr3 for reduced recombination and improved efficiency

M. I. Khan, Saddam Hussain, Muhamad Saleem, Fatimah Mohammed Alzahrani, Muhammad Siddique, M. S. Hassan, Allah Ditta Khalid, Munawar Iqbal

Summary: The sol-gel method was used to deposit Ti-doped MAPbBr3 films on FTO-glass substrates with different doping ratios (0%, 4%, and 6%). XRD analysis confirmed the cubic structure of all films, and the 4% Ti-doped film exhibited a large grain size, low band gap energy, and high refractive index. Solar cells fabricated using the 4% Ti-doped MAPbBr3 film showed improved performance in terms of current density, open circuit voltage, fill factor, and efficiency.

PHYSICA B-CONDENSED MATTER (2024)