4.6 Article

Enantioselective optical trapping of chiral nanoparticles using a transverse optical needle field with a transverse spin

Journal

OPTICS EXPRESS
Volume 28, Issue 19, Pages 27808-27822

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.403556

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [11504049, 11774055]

Ask authors/readers for more resources

Since the fundamental building blocks of life are built of chiral amino acids and chiral sugar, enantiomer separation is of great interest in plenty of chemical syntheses. Light-chiral material interaction leads to a unique chiral optical force, which possesses opposite directions for specimens with different handedness. However, usually the enantioselective sorting is challenging in optical tweezers due to the dominating achiral force. In this work, we propose an optical technique to sort chiral specimens by use of a transverse optical needle field with a transverse spin (TONFTS), which is constructed through reversing the radiation patterns from an array of paired orthogonal electric dipoles located in the focal plane of a 4Pi microscopy and experimentally generated with a home-built vectorial optical field generator. It is demonstrated that the transverse component of the photonic spin gives rise to the chiral optical force perpendicular to the direction of the light's propagation, while the transverse achiral gradient force would be dramatically diminished by the uniform intensity profile of the optical needle field. Consequently, chiral nanoparticles with different handedness would be laterally sorted by the TONTTS and trapped at different locations along the optical needle field, providing a feasible route toward all-optical enantiopure chemical syntheses and enantiomer separations in pharmaceuticals. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available