4.3 Article

Slip Effects on Unsteady Oblique Stagnation Point Flow of Nanofluid in a View of Inclined Magnetic Field

Journal

MATHEMATICAL PROBLEMS IN ENGINEERING
Volume 2020, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2020/6580409

Keywords

-

Ask authors/readers for more resources

This study may be applicable in heavy power engine and cooling of a nuclear reactor, insulation for buildings, petroleum reservoir operations, and magnetic material processing solar energy collectors. In this manuscript, the slip results are evaluated for the non-Newtonian fluid on the oblique stagnation point flow of induced magnetic field over the oscillating surface. The valuation of heat flux is examined through the Fourier law of heat transfer. The metallic nanoparticle Copper (Cu) is within the base fluid, and water is utilized in the analysis. Nanofluids have benefits such as steadiness of the working fluid, decreasing blockage, clogs, decreasing prices, decreasing the friction coefficient, and decreasing the size of the heat transfer system. Similarity variables are utilized to convert the developed flow into higher nonlinear coupled ordinary differential equations (ODE) which are tackled numerically using a mathematical technique such as the bvp4c method in Maple and Matlab software. According to the present geometry, the flow behavior of the operating nanofluid has analyzed by stream lines. Disparities in velocity and temperature profile are demonstrated by graphs to describe the effects of controlling parameters. The Casson fluid parameter enhances the velocity of the fluid. The system heats up by the impact of Joule heating and dissipation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available